/usr/share/html/avcall.html is in libffcall1-dev 1.10+cvs20100619-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | <HEAD>
<TITLE> AVCALL manual page </TITLE>
</HEAD>
<BODY>
<H1>AVCALL manual page</H1>
<UL>
<LI> <A HREF="#Name">Name</A>
<LI> <A HREF="#Synopsis">Synopsis</A>
<LI> <A HREF="#Description">Description</A>
<LI> <A HREF="#Notes">Notes</A>
<LI> <A HREF="#See also">See also</A>
<LI> <A HREF="#Bugs">Bugs</A>
<LI> <A HREF="#Non-Bugs">Non-Bugs</A>
<LI> <A HREF="#Porting AVCALL">Porting AVCALL</A>
<LI> <A HREF="#Author">Author</A>
<LI> <A HREF="#Acknowledgements">Acknowledgements</A>
</UL>
<P>
<HR>
<A NAME="Name">
<H2>Name</H2>
</A>
avcall - build a C argument list incrementally and call a
C function on it.
<A NAME="Synopsis">
<H2>Synopsis</H2>
</A>
<PRE>
<CODE>#include <avcall.h></CODE>
<CODE>av_alist <VAR>alist</VAR>;</CODE>
<CODE>av_start_<VAR>type</VAR> (<VAR>alist</VAR>, &<VAR>func</VAR>, [[<VAR>return_type</VAR>,] &<VAR>return_value</VAR>]);</CODE>
<CODE>av_<VAR>type</VAR> (<VAR>alist</VAR>, [<VAR>arg_type</VAR>,] <VAR>value</VAR>);</CODE>
<CODE>av_call(<VAR>alist</VAR>);</CODE>
</PRE>
<A NAME="Description">
<H2>Description</H2>
</A>
This set of macros builds an argument list for a C function
and calls the function on it. It significantly
reduces the amount of `glue' code required for parsers,
debuggers, imbedded interpreters, C extensions to application
programs and other situations where collections of
functions need to be called on lists of externally-
supplied arguments.
<P>
Function calling conventions differ considerably on different
machines and <CODE>avcall</CODE> attempts to provide some degree
of isolation from such architecture dependencies.
<P>
The interface is like <A HREF="stdarg(3)"><CODE><B>stdarg</B></CODE></A>(3) in reverse. All of the
macros return 0 for success, < 0 for failure (e.g., argument
list overflow or type-not-supported).
<P>
<OL>
<LI> <CODE>#include <avcall.h></CODE> and declare the argument list
structure <CODE>av_alist <VAR>alist</VAR>;</CODE>
<P>
<LI> Set any special flags. This is architecture and compiler
dependent.
Compiler options that affect passing conventions may need
to be flagged by <CODE>#define</CODE>s before the <CODE>#include <avcall.h></CODE>
statement. However, the <SAMP>configure</SAMP> script should have
determined which <CODE>#define</CODE>s are needed and put them
at the top of <SAMP>avcall.h</SAMP>.
<P>
<LI> Initialize the alist with the function address and
return value pointer (if any). There is a separate macro
for each simple return type ([u]char, [u]short, [u]int,
[u]long, [u]longlong, float, double, where `u' indicates
`unsigned'). The macros for functions returning structures
or pointers require an explicit type argument.
<P>
E.g.,
<PRE>
<CODE>av_start_int (<VAR>alist</VAR>, &<VAR>func</VAR>, &<VAR>int_return</VAR>);</CODE>
<CODE>av_start_double (<VAR>alist</VAR>, &<VAR>func</VAR>, &<VAR>double_return</VAR>);</CODE>
<CODE>av_start_void (<VAR>alist</VAR>, &<VAR>func</VAR>);</CODE>
<CODE>av_start_struct (<VAR>alist</VAR>, &<VAR>func</VAR>, <VAR>struct_type</VAR>, <VAR>splittable</VAR>, &<VAR>struct_return</VAR>);</CODE>
<CODE>av_start_ptr (<VAR>alist</VAR>, &<VAR>func</VAR>, <VAR>pointer_type</VAR>, &<VAR>pointer_return</VAR>);</CODE>
</PRE>
The <VAR>splittable</VAR> flag specifies whether the <VAR>struct_type</VAR> can
be returned in registers such that every struct field fits
entirely in a single register. This needs to be specified
for structs of size <SAMP>2*sizeof(long)</SAMP>. For structs of size
<= <SAMP>sizeof(long)</SAMP>, splittable is ignored and assumed to be 1.
For structs of size > <SAMP>2*sizeof(long)</SAMP>, splittable is
ignored and assumed to be 0. There are some handy macros
for this:
<PRE>
<CODE>av_word_splittable_1 (<VAR>type1</VAR>)</CODE>
<CODE>av_word_splittable_2 (<VAR>type1</VAR>, <VAR>type2</VAR>)</CODE>
<CODE>av_word_splittable_3 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>)</CODE>
<CODE>av_word_splittable_4 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>, <VAR>type4</VAR>)</CODE>
</PRE>
For a struct with three slots
<PRE>
<CODE>struct { <VAR>type1 id1</VAR>; <VAR>type2 id2</VAR>; <VAR>type3 id3</VAR>; }</CODE>
</PRE>
you can specify <VAR>splittable</VAR> as
<CODE>av_word_splittable_3 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>)</CODE>.
<P>
<LI> Push the arguments on to the list in order. Again
there is a macro for each simple built-in type, and the
macros for structure and pointer arguments require an
extra type argument:
<PRE>
<CODE>av_int (<VAR>alist</VAR>, <VAR>int_value</VAR>);</CODE>
<CODE>av_double (<VAR>alist</VAR>, <VAR>double_value</VAR>);</CODE>
<CODE>av_struct (<VAR>alist</VAR>, <VAR>struct_or_union_type</VAR>, <VAR>struct_value</VAR>);</CODE>
<CODE>av_ptr (<VAR>alist</VAR>, <VAR>pointer_type</VAR>, <VAR>pointer_value</VAR>);</CODE>
</PRE>
<LI> Call the function, set the return value, and tidy up:
<CODE>av_call (<VAR>alist</VAR>);</CODE>
</OL>
<A NAME="Notes">
<H2>Notes</H2>
</A>
<OL>
<LI> Functions whose first declaration is in Kernighan &
Ritchie style (i.e., without a typed argument list) MUST
use default K&R C expression promotions (<CODE>char</CODE> and <CODE>short</CODE> to
<CODE>int</CODE>, <CODE>float</CODE> to <CODE>double</CODE>) whether they are compiled by a K&R
or an ANSI compiler, because the true argument types may
not be known at the call point. Such functions typically
back-convert their arguments to the declared types on
function entry. (In fact, the only way to pass a true
<CODE>char</CODE>, <CODE>short</CODE> or <CODE>float</CODE> in K&R C is by an explicit cast:
<CODE>func((char)c,(float)f)</CODE> ). Similarly, some K&R compilers
(such as Sun <SAMP>cc</SAMP> on the sparc) actually return a <CODE>float</CODE> as a
<CODE>double</CODE>.
<P>
Hence, for arguments of functions declared in K&R style
you should use <CODE>av_int()</CODE> and </CODE>av_double()</CODE> rather than
<CODE>av_char()</CODE>, <CODE>av_short()</CODE> or <CODE>av_float()</CODE>. If you use a K&R
compiler, the avcall header files may be able to detect
this and define <CODE>av_float()</CODE>, etc, appropriately, but with
an ANSI compiler there is no way <B>avcall</B> can know how a
function was declared, so you have to correct the argument
types yourself.
<P>
<LI> The explicit type arguments of the <CODE>av_struct()</CODE> and
<CODE>av_ptr()</CODE> macros are typically used to calculate size,
alignment, and passing conventions. This may not be sufficient for some machines with unusual structure and
pointer handling: in this case additional <CODE>av_start_<VAR>type</VAR>()</CODE>
and <CODE>av_<VAR>type</VAR>()</CODE> macros may be defined.
<P>
<LI> The macros <CODE>av_start_longlong()</CODE>,
<CODE>av_start_ulonglong()</CODE>, <CODE>av_longlong()</CODE> and
<CODE>av_ulonglong()</CODE> work only if the C compiler has a working
<CODE>long long</CODE> 64-bit integer type.
<P>
<LI> The struct types used in <CODE>av_start_struct()</CODE> and
<CODE>av_struct()</CODE> must only contain (signed or unsigned) int,
long, long long or pointer fields. Struct types containing
(signed or unsigned) char, short, float, double or other
structs are not supported.
<P>
</OL>
<A NAME="See also">
<H2>See also</H2>
</A>
<A HREF="stdarg(3)"><CODE><B>stdarg</B></CODE></A>(3), <A HREF="varargs(3)"><CODE><B>varargs</B></CODE></A>(3).
<A NAME="Bugs">
<H2>Bugs</H2>
</A>
<UL>
<LI>
The current implementations have been tested on a selection
of common cases but there are probably still many
bugs.
<LI>
There are typically built-in limits on the size of the
argument-list, which may also include the size of any
structure arguments.
<LI>
The decision whether a struct is to be returned in registers or in memory
considers only the struct's size and alignment. This is inaccurate: for
example, gcc on m68k-next returns
<CODE>struct { char a,b,c; }</CODE>
in registers and
<CODE>struct { char a[3]; }</CODE>
in memory, although both types have the same size and the same alignment.
</UL>
<A NAME="Non-Bugs">
<H2>Non-Bugs</H2>
</A>
All information is passed in CPU registers and the stack.
The <CODE><B>avcall</B></CODE> package is therefore multithread-safe.
<A NAME="Porting AVCALL">
<H2>Porting AVCALL</H2>
</A>
Ports, bug-fixes, and suggestions are most welcome. The
macros required for argument pushing are pretty grungy,
but it does seem to be possible to port avcall to a range
of machines. Ports to non-standard or non-32-bit machines
are especially welcome so we can sort the interface out
before it's too late.
<P>
Knowledge about argument passing conventions can be found
in the gcc source, file <SAMP>gcc-2.6.3/config/<VAR>cpu</VAR>/<VAR>cpu</VAR>.h</SAMP>, section
<SAMP>"Stack layout; function entry, exit and calling."</SAMP>
<P>
Some of the grunge is usually handled by a C or assembly
level glue routine that actually pushes the arguments,
calls the function and unpacks any return value. This is
called <CODE>__builtin_avcall()</CODE>. A precompiled assembler version for
people without gcc is also made available. The routine should ideally
have flags for the passing conventions of other compilers.
<P>
Many of the current routines waste a lot of stack space
and generally do hairy things to stack frames - a bit more
assembly code would probably help things along quite a bit
here.
<P>
<A NAME="Author">
<H2>Author</H2>
</A>
Bill Triggs <Bill.Triggs@inrialpes.fr>, <Bill.Triggs@imag.fr>.
<A NAME="Acknowledgements">
<H2>Acknowledgements</H2>
</A>
Some initial ideas were stolen from the C interface to the
Zelk extensions to Oliver Laumann's Elk scheme interpreter
by J.P.Lewis, NEC C&C Research, <zilla@ccrl.nj.nec.com>
(for Sun4 & SGI), and Roy Featherstone's
<roy@robots.oxford.ac.uk> personal C interface library for
Sun3, Sun4 & SGI. I also looked at the machine-dependent
parts of the GCC and GDB distributions, and put the gcc
<CODE>asm()</CODE> extensions to good use. Thanks guys!
<P>
This work was partly supported by EC-ESPRIT Basic Research
Action SECOND.
<P>
<HR>
<ADDRESS>AVCALL manual page<BR>
Bruno Haible <bruno@clisp.org>
</ADDRESS>
<P>
Last modified: 14 January 2001.
</BODY>
|