This file is indexed.

/usr/include/fplll/bkz_param.h is in libfplll-dev 5.0.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#ifndef BKZ_PARAM_H
#define BKZ_PARAM_H

/* (C) 2014-2016 Martin Albrecht.

   This file is part of fplll. fplll is free software: you can
   redistribute it and/or modify it under the terms of the GNU Lesser
   General Public License as published by the Free Software
   Foundation, either version 2.1 of the License, or (at your option)
   any later version.

   fplll is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with fplll. If not, see
   <http://www.gnu.org/licenses/>.

*/

#include "defs.h"
#include <string>
#include <vector>

FPLLL_BEGIN_NAMESPACE

/**
   Pruning parameters for one radius (expressed as a ratio to the Gaussian heuristic)
 */

class Pruning
{

public:
  double radius_factor;              //< radius/Gaussian heuristic
  std::vector<double> coefficients;  //< pruning coefficients
  double probability;                //< success probability

  /**
     The default constructor means no pruning.
  */

  Pruning() : radius_factor(1.), probability(1.){};

  /** Set all pruning coefficients to 1, except the last <level>
      coefficients, these will be linearly with slope `-1 /
      block_size`.

      @param level number of levels in linear descent
  */

  static Pruning LinearPruning(int block_size, int level);
};

/**
   A strategy covers pruning parameters and preprocessing block_sizes
*/

class Strategy
{
public:

  size_t block_size; //< block size
  vector<Pruning> pruning_parameters; //< Pruning parameters
  vector<size_t> preprocessing_block_sizes; //< For each block size we run one tour

  /** Construct an empty strategy

      @note Use this instead of the default constructor. The default
      constructor does not add default pruning parameters.

   */

  static Strategy EmptyStrategy(size_t block_size)
  {
    Strategy strat;
    strat.block_size = block_size;
    strat.pruning_parameters.emplace_back(Pruning());
    return strat;
  };


  /** Select the best pruning parameters for the input `radius`. The
      parameter `gh` is used to establish the ratio between `radius`
      and the Gaussian heuristic, which is used for sizes.

     @param radius radius of the currently shortest vector
     @param gh Gaussian heuristic prediction for radius

   */

  const Pruning &get_pruning(double radius, double gh) const;
};

class BKZParam
{
public:

  /**
     @brief Create BKZ parameters

     @param block_size               block size > 2
     @param strategies               vector of strategies used for pruning and preprocessing
     @param delta                    LLL parameter delta
     @param flags                    flags
     @param max_loops                maximum number of loops (or zero to disable this)
     @param max_time                 maximum number of time  (or zero to disable this)
     @param auto_abort_scale         auto abort when next tour does not improve slope over `scale` * previous tour
     @param auto_abort_max_no_dec    auto abort when next tour does not improve slope `no_dec` times
     @param gh_factor                set enumeration bound to Gaussian heuristic times `gh_factor`
     @param min_success_probability  minimum success probability in an SVP reduction (when using pruning)
     @param rerandomization_density  the heavier rerandomization, the better our guarantees and costs
  */

  BKZParam(int block_size, vector<Strategy> &strategies, double delta = LLL_DEF_DELTA,
           int flags = BKZ_DEFAULT,
           int max_loops = 0,
           double max_time = 0,
           double auto_abort_scale = BKZ_DEF_AUTO_ABORT_SCALE,
           int auto_abort_max_no_dec = BKZ_DEF_AUTO_ABORT_MAX_NO_DEC,
           double gh_factor = BKZ_DEF_AUTO_ABORT_MAX_NO_DEC,
           double min_success_probability = BKZ_DEF_MIN_SUCCESS_PROBABILITY,
           int rerandomization_density = BKZ_DEF_RERANDOMIZATION_DENSITY)
      : block_size(block_size), strategies(strategies), delta(delta), flags(flags),
        max_loops(max_loops), max_time(max_time), auto_abort_scale(auto_abort_scale),
        auto_abort_max_no_dec(auto_abort_max_no_dec), gh_factor(gh_factor),
        dump_gso_filename("gso.log"), min_success_probability(min_success_probability),
        rerandomization_density(rerandomization_density)
  {

    // we create dummy strategies
    if (strategies.empty())
    {
      strategies = vector<Strategy>();
      for (long b = 0; b <= block_size; ++b)
      {
        strategies.emplace_back(Strategy::EmptyStrategy(b));
      }
    }
  };

  /** Block size used for enumeration **/
  int block_size;

  /** Strategies (pruning coefficients, preprocessing)  */
  vector<Strategy> &strategies;

  /** LLL parameter delta **/
  double delta;

  /** See BKZFlags **/
  int flags;

  /** Maximum number of loops to execute **/
  int max_loops;

  /** Maximum time to spend **/
  double max_time;

  /** If BKZ_AUTOABORT is set, We abort if `new_slope < auto_abort_scale * old_slope`
      is true for `auto_abort_max_no_dec` loops.
   */
  double auto_abort_scale;
  int auto_abort_max_no_dec;

  /** If BKZ_GH_BND is set, the enumeration bound will be set to gh_factor times
      the Gaussian Heuristic
  */

  double gh_factor;

  /** If BKZ_DUMP_GSO is set, the norms of the GSO matrix are written to this
      file after each complete round.
  */

  string dump_gso_filename;

  /** minimum success probability when using extreme pruning */

  double min_success_probability;

  /** density of rerandomization operation when using extreme pruning **/

  int rerandomization_density;
};

/**
   Load BKZ pruning and preprocessing strategies from a json file.

   @note All parameters except pruning and preprocessing are silently ignored.
*/

vector<Strategy> load_strategies_json(const std::string &filename);

/**
   Return default directory to search for strategies (if any)
*/

const std::string &default_strategy_path();

/**
   Return default strategy (if any)
*/

const std::string &default_strategy();

/**
   Attempt to expand strategy path to full path
*/

const std::string strategy_full_path(const string &strategy_path);

FPLLL_END_NAMESPACE
#endif /* BKZ_PARAM_H */