This file is indexed.

/usr/include/fplll/pruner.h is in libfplll-dev 5.0.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#ifndef FPLLL_PRUNER_H
#define FPLLL_PRUNER_H

/* Copyright (C) 2015-2016 Martin Albrecht, Leo Ducas.

   This file is part of fplll. fplll is free software: you
   can redistribute it and/or modify it under the terms of the GNU Lesser
   General Public License as published by the Free Software Foundation,
   either version 2.1 of the License, or (at your option) any later version.

   fplll is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTAbILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public License
   along with fplll. If not, see <http://www.gnu.org/licenses/>. */

#include "defs.h"
#include "gso.h"
#include "bkz_param.h"
#include <array>

FPLLL_BEGIN_NAMESPACE

/**
   This file provides an implementation of the numerically optimized pruning
   strategy of [GNR10].

   Many details for implementation follows from the thesis [Chen13] Some
   simplifications have been made, for example we restrict ourselves to ``even
   vector bounds'' i.e., the bound at indices 2i and 2i+1 are kept equal, as to
   allow volume estimation by pure integration (see [GNR10,Chen13])

   The current descent method use gradients, but alternative algorithms
   (Nelder-Mead) May be added soon.

   naming conventions:

   - b is for bound (squared)

   - ipv is for inverse partial volumes (NOT squared)

   - r is for gram schmidt length (squared). Automatically renormalized to avoid
   overflowing partial volumes

   - p is for polynomial

   inside this code, b,pv,and R are in reversed order as to conform with the
   algorithm desciption of [Chen13] reversing the order is handled by the load
   and save methods.

   - n is for the dimension of the basis to prune

   - d is for degrees of polynomials. md is for max_degree

   - d is floor(n/2 at most). Odd n are dealt with by ignoring the first component
*/

#define PRUNER_MAX_PREC 1000
#define PRUNER_MAX_D 1023
#define PRUNER_MAX_N 2047



/**
   @brief prune function, hiding the Pruner class

   @param pr store pruning coefficients here
   @param probability store success probability here
   @param enumeration_radius target enumeration radius
   @param preproc_cost cost of preprocessing
   @param target_probability overall target success probability
   @param m GSO matrix
   @param method for the descent (gradient, NM, both)
   @param start_row start enumeration here
   @param end_row stop enumeration here
*/

template <class FT, class GSO_ZT, class GSO_FT>
void prune(/*output*/ vector<double> &pr, double &probability,
           /*inputs*/ const double enumeration_radius, const double preproc_cost,
           const double target_probability, const MatGSO<GSO_ZT, GSO_FT> &m, 
           const int descent_method = PRUNER_METHOD_HYBRID, int start_row = 0, int end_row = 0);


/**
   @brief prune function, hiding the Pruner class

   @param pruning store pruning structure
   @param probability store success probability here
   @param enumeration_radius target enumeration radius
   @param preproc_cost cost of preprocessing
   @param target_probability overall target success probability
   @param m GSO matrix
   @param method for the descent (gradient, NM, both)
   @param start_row start enumeration here
   @param end_row stop enumeration here

   @return Pruning object.
*/

template <class FT, class GSO_ZT, class GSO_FT>
Pruning prune(/*inputs*/ const double enumeration_radius, const double preproc_cost,
           const double target_probability, MatGSO<GSO_ZT, GSO_FT> &m, 
           const int descent_method = PRUNER_METHOD_HYBRID, int start_row = 0, int end_row = 0);

/**
   @brief prune function averaging over several bases

   @param probability store success probability here
   @param enumeration_radius target enumeration radius
   @param preproc_cost cost of preprocessing
   @param target_probability overall target success probability
   @param m GSO matrices
   @param start_row start enumeration here
   @param end_row stop enumeration here
   @return Pruning object.
*/

template <class FT, class GSO_ZT, class GSO_FT>
Pruning prune(/*inputs*/ const double enumeration_radius, const double preproc_cost,
              const double target_probability, vector<MatGSO<GSO_ZT, GSO_FT> > &m,
              const int descent_method = PRUNER_METHOD_HYBRID, int start_row = 0, int end_row = 0);

/**
   @brief svp_probability function, hiding the Pruner class

   @param pruning
   @return pruning probability
*/


template <class FT>
double svp_probability(const Pruning &pruning);

template <class FT>
double svp_probability(const vector<double> &pr);


template <class FT> class Pruner
{
public:
  class TestPruner;
  friend class TestPruner;

  /** @brief enumeration radius (squared) */
  FT enumeration_radius;

  /** @brief cost of pre-processing a basis for a retrial

      This cost should be expressed in terms of ``nodes'' in an enumeration.
      Roughly, a node is equivalent to 100 CPU cycles.
  */
  FT preproc_cost;

  /** @brief desired success probability after several retrial

      @note one can try to force probability >= target_probability by setting
      a prohibitive preproc_cost. But beware: this may induces numerical
      stability issue, especially with the gradient method. 
  */

  FT target_probability;

  int verbosity = 0; 

  int descent_method;


  Pruner(FT enumeration_radius=0.0, FT preproc_cost=0.0, FT target_probability=0.9, int descent_method = PRUNER_METHOD_HYBRID, size_t n=0, size_t d=0):
    enumeration_radius(enumeration_radius), 
    preproc_cost(preproc_cost), 
    target_probability(target_probability), 
    descent_method(descent_method),
    n(n), 
    d(d)
  {
    set_tabulated_consts();
    epsilon     = std::pow(2., -13);  // Guesswork. Will become obsolete with Nelder-Mead
    min_step    = std::pow(2., -12);  // Guesswork. Will become obsolete with Nelder-Mead
    step_factor = std::pow(2, .5);    // Guesswork. Will become obsolete with Nelder-Mead
    shell_ratio = .995;  // This approximation means that SVP will in fact be approx-SVP with factor 1/.995. Sounds fair.
    min_cf_decrease = .9999;  // We really want the gradient descent to reach the minima
    symmetry_factor = 2;      // For now, we are just considering SVP

  }

  /** @brief load the shape of a basis from a MatGSO object. Can select a
      projected sub-lattice [start_row,end_row-1]
  */
  template <class GSO_ZT, class GSO_FT>
  void load_basis_shape(MatGSO<GSO_ZT, GSO_FT> &gso, int start_row = 0, int end_row = 0, int reset_renorm = 1);

  /** @brief load the shapes of several bases from a MatGSO object. Can select a
      projected sub-lattice [start_row,end_row-1]
  */
  template <class GSO_ZT, class GSO_FT>
  void load_basis_shapes(vector<MatGSO<GSO_ZT, GSO_FT> > &gsos, int start_row = 0, int end_row = 0);


  /** @brief load the shape of a basis from vector<double>. Mostly for testing purposes */

  void load_basis_shape(const vector<double> &gso_sq_norms, int reset_renorm = 1);

  /** @brief load the shapes of may bases from vector<vector<double>> . Cost are average over all bases. Mostly for testing purposes */

  void load_basis_shapes(const vector<vector<double> > &gso_sq_norms_vec);

  /** @brief optimize pruning coefficients

      @note Basis Shape and other parameters must have been set beforehand. See
      auto_prune for an example of proper usage.
  */
  void optimize_coefficients(/*io*/ vector<double> &pr, /*i*/ const int reset = 1);

  /** @brief Compute the cost of a single enumeration */

  double single_enum_cost(/*i*/ const vector<double> &pr) {
    evec b;
    load_coefficients(b, pr);
    return single_enum_cost(b).get_d();
  }

  /** @brief Compute the cost of r enumeration and (r-1) preprocessing, where r
      is the required number of retrials to reach target_probability
  */
  double repeated_enum_cost(/*i*/ const vector<double> &pr) {
    evec b;
    load_coefficients(b, pr);
    return repeated_enum_cost(b).get_d();
  }

  /**
     @brief Compute the success proba of a single enumeration
  */
  double svp_probability(/*i*/ const vector<double> &pr) {
    if (!n){ // Can be called even if no basis has been loaded. In that case, set the dims
        n = pr.size();
        d = n / 2;  
      }
    evec b;
    load_coefficients(b, pr);
    return svp_probability(b).get_d();
  }

private:
  using vec  = array<FT, PRUNER_MAX_N>;
  using evec = array<FT, PRUNER_MAX_D>;
  // Even vectors, i.e. only one every two entry is stored: V[2i] = V[2i+1] =E[i]
  using poly = array<FT, PRUNER_MAX_D + 1>;

  // Load the constants for factorial and ball-volumes
  void set_tabulated_consts();
  size_t n;  // Dimension of the (sub)-basis
  size_t d;  // Degree d = floor(n/2)

  vec r;                      // Gram-Schmidt length (squared, inverted ordering)
  vec ipv;                     // Partial volumes (inverted ordering)
  FT renormalization_factor;  // internal renormalization factor to avoid over/underflows

  // Sanity check: has a basis indeed been loaded ?
  int check_basis_loaded();
  // Initialize pruning coefficients (linear pruning)
  void init_coefficients(evec &b);
  // Load pruning coefficient from double*
  void load_coefficients(/*o*/ evec &b, /*i*/ const vector<double> &pr);
  // Save pruning coefficients to double*
  void save_coefficients(/*o*/ vector<double> &pr, /*i*/ const evec &b);
  // Enforce reasonable contraints on pruning bounds (inside [0,1], increasing).
  // Keeps index j unchanged when possible
  int enforce_bounds(/*io*/ evec &b, /*opt i*/ const int j = 0);
  // Evaluate a polynomial
  FT eval_poly(const int ld, /*i*/ const poly &p, const FT x);
  // Integrate a polynomial
  void integrate_poly(const int ld, /*io*/ poly &p);
  // Compute the relative volume of a cylinder interesection of dim rd, and bounds b[0:rd]
  FT relative_volume(/*i*/ const int rd, const evec &b);
  // Compute the cost of a single enumeration
  FT single_enum_cost(/*i*/ const evec &b);
  // Compute the success probability of a single enumeration
  FT svp_probability(/*i*/ const evec &b);
  // Compute the cost of r enumeration and (r-1) preprocessing,
  // where r is the required number of retrials to reach target_probability
  FT repeated_enum_cost(/*i*/ const evec &b);
  // Compute the gradient of the above function
  void repeated_enum_cost_gradient(/*i*/ const evec &b, /*o*/ evec &res);
  // Improve the pruning bounds a bit,  using one gradient step
  int improve(/*io*/ evec &b);
  // Improve the pruning bounds substantially, using Nelder-Mead method
  int nelder_mead(/*io*/ evec &b);
  // Run the whole escent to optimize pruning bounds
  void descent(/*io*/ evec &b);

  FT tabulated_factorial[PRUNER_MAX_N];
  FT tabulated_ball_vol[PRUNER_MAX_N];

  FT epsilon;          //< Epsilon to use for numerical differentiation
  FT min_step;         //< Minimal step in a given direction
  FT min_cf_decrease;  //< Maximal ratio of two consectuive cf in the descent before stopping

  FT step_factor;      //< Increment factor for steps in a given direction
  FT shell_ratio;      //< Shell thickness Ratio when evaluating svp proba
  FT symmetry_factor;  //< Set at 2 for SVP enumeration assuming the implem only explore half the
                       //< space
};

FPLLL_END_NAMESPACE

#endif /* FPLLL_PRUNER_H */