This file is indexed.

/usr/include/freehdl/kernel-list.hh is in libfreehdl0-dev 0.0.8-2.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#ifndef FREEHDL_KERNEL_LIST_H
#define FREEHDL_KERNEL_LIST_H

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

//**********************************************************************
// A simple list template class.
//**********************************************************************

template<class T> class simple_list {
  struct _item {
    _item *next, *prev;
    T value;
    _item() { };
  };

  _item *first_item, *last_item;

  // A list of currently unused items
  _item *free_items;

  // Allocates a new item from the free_items list or creates
  // a new one
  _item *internal_new() {
    if (free_items) {
      _item *nitem = free_items;
      free_items = free_items->next;
      return nitem;
    }
    return new _item;
  }

  // Removes a item from the list. Actually, the memory is not
  // "freed" but the item is inserted into the free_items list
  void internal_delete(void *p) {
    _item *pos = (_item*)p;
    pos->next = free_items;
    free_items = pos;
  }
 public:
  void clean_up() {
    while (free_items) {
      _item *nitem = free_items->next;
      delete free_items;
      free_items = nitem;
    }
    free_items = NULL;
  }

  simple_list() { first_item = last_item = free_items = NULL; }

  // Returns the # of items on the list
  int size();

  // Returns true if the list is empty
  int is_empty() { return first_item == NULL; }

  // Returns handler to first item on the list
  void *begin() const { return (void*)first_item; }

  // Returns handler to last item on the list
  void *end() const { return (void*)last_item; }

  // Returns next item
  void *next(void *p) { return ((_item*)p)->next; }

  // Returns prevouis item
  void *prev(void *p) { return ((_item*)p)->prev; }

  // Returns a reference to the content of a list item
  T &content(void *p) { return ((_item*)p)->value; }

  // Inserts a new item into the list. The item is inserted 
  // before the item referenced by "pos". If pos is NULL then
  // it is appended.
  void *insert(void *p, const T &t) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;
    new_item->value = t;
    if (!pos) {
      new_item->prev = last_item;
      new_item->next = NULL;
      if (last_item) last_item->next = new_item;
      else first_item = new_item;
      last_item = new_item;
      return (void*)new_item;
    } else if (pos == first_item) {
      new_item->prev = NULL;
      first_item->prev = new_item;
      new_item->next = first_item;
      first_item = new_item;
      return (void*)new_item;
    }
    pos->prev->next = new_item;
    new_item->prev = pos->prev;
    pos->prev = new_item;
    new_item->next = pos;
    return (void*)new_item;
  }

  // Append a new item
  void *push_back(const T &t) { return insert(NULL, t); } 

  // Removes a item. Returns a handler to the previous item
  // or to the first item on the list if the removed one was
  // the first item.
  void *remove(void *p) {
    _item *pos = (_item*)p;
    if (pos->prev) pos->prev->next = pos->next; else first_item = pos->next;
    if (pos->next) pos->next->prev = pos->prev; else last_item = pos->prev;
    _item *ret = (pos->prev)? pos->prev : first_item;
    internal_delete(pos);
    return (void*) ret;
  }

  // Reset list
  void reset() {
    _item *pos = first_item;
    while (pos) { pos = (_item*)remove(pos); }
    clean_up(); 
  }

  // Destructor
  ~simple_list() { reset(); }
};


template<class T>
int simple_list<T>::size()
{
  int result = 0;
  _item *pos = first_item;
  while (pos) {
    result++;
    pos = pos->next;
  }
  return result;
}





//**********************************************************************
// A sorted list template class. The list items are sorted
// in increasing order given by "key".
//**********************************************************************

template<class T, class K> class simple_queue {
  struct _item {
    K key;
    _item *next, *prev;
    T value;
    _item() { };
  };
  _item *first_item, *last_item;
  _item *free_items;
  
  // Allocates a new item from the free_items list or creates
  // a new one
  _item *internal_new() {
    if (free_items) {
      _item *nitem = free_items;
      free_items = free_items->next;
      return nitem;
    }
    return new _item;
  }

  // Removes a item from the list. Actually, the memory is not
  // "freed" but the item is inserted into the free_items list
  void internal_delete(void *p) {
    _item *pos = (_item*)p;
    pos->next = free_items;
    free_items = pos;
  }
 public:
  void clean_up() {
    while (free_items) {
      _item *nitem = free_items->next;
      delete free_items;
      free_items = nitem;
    }
    free_items = NULL;
  }

  simple_queue() { first_item = last_item = free_items = NULL; }

  // Returns the # of items on the list
  int size();

  // Returns handler to first item on the list
  void *begin() const { return (void*)first_item; }

  // Returns handler to last item on the list
  void *end() const { return (void*)last_item; }

   // Returns next item
  void *next(void *p) { return ((_item*)p)->next; }
  
  // Returns prevouis item
  void *prev(void *p) { return ((_item*)p)->prev; }

  // Returns a reference to the content of a list item
  T &content(void *p) { return ((_item*)p)->value; }

  // Returns the key value of the item
  K &key(void *p) { return ((_item*)p)->key; }

  // Inserts a new item into the list. The item is inserted 
  // before the item referenced by "pos". If pos is NULL then
  // it is appended.
  void *insert(void *p, const T &t, const K &key) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;
    new_item->value = t;
    new_item->key = key;
    if (!pos) {
      new_item->prev = last_item;
      new_item->next = NULL;
      if (last_item) last_item->next = new_item;
      else first_item = new_item;
      last_item = new_item;
      return (void*)new_item;
    } else if (pos == first_item) {
      new_item->prev = NULL;
      first_item->prev = new_item;
      new_item->next = first_item;
      first_item = new_item;
      return (void*)new_item;
    }
    pos->prev->next = new_item;
    new_item->prev = pos->prev;
    pos->prev = new_item;
    new_item->next = pos;
    return (void*)new_item;
  }

  // Creates a new item. The item is inserted 
  // before the item referenced by "pos". If pos is NULL then
  // it is appended. Note, the value of the new item
  // is not set.
  void *insert(void *p, const K &key) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;
    new_item->key = key;
    if (!pos) {
      new_item->prev = last_item;
      new_item->next = NULL;
      if (last_item) last_item->next = new_item;
      else first_item = new_item;
      last_item = new_item;
      return (void*)new_item;
    } else if (pos == first_item) {
      new_item->prev = NULL;
      first_item->prev = new_item;
      new_item->next = first_item;
      first_item = new_item;
      return (void*)new_item;
    }
    pos->prev->next = new_item;
    new_item->prev = pos->prev;
    pos->prev = new_item;
    new_item->next = pos;
    return (void*)new_item;
  }

  // Append a new item
  void *push_back(const T &t, const K &key) { return insert(NULL, t, key); } 

  // Append a new item
  void *push_back(const K &key) { return insert(NULL, key); } 

  // Removes a item. Returns a handler to the previous item
  // or to the first item on the list if the removed one was
  // the first item.
  void *remove(void *p) {
    _item *pos = (_item*)p;
    if (pos->prev) pos->prev->next = pos->next; else first_item = pos->next;
    if (pos->next) pos->next->prev = pos->prev; else last_item = pos->prev;
    _item *ret = (pos->prev)? pos->prev : first_item;
    internal_delete(pos);
    return (void*) ret;
  }

  // Inserts a new item into the list sorted in increasing order
  // by k
  void *inqueue(const T &t, const K &k) {
    _item *pos = first_item;
    while (pos && pos->key < k) { pos = pos->next; }
    return insert(pos, t, k);
  }

  // Same as inqueue, but the place to insert the new item is 
  // searched starting from the end of the queue
  void *inqueue_r(const T &t, const K &k) {
    _item *pos = last_item, *old_pos = NULL;
    while (pos && pos->key > k) { old_pos = pos; pos = pos->prev; }
    return insert(old_pos, t, k);
  }

  // Destructor
  ~simple_queue() { 
    _item *pos = first_item;
    while (pos) { pos = (_item*)remove(pos); }
    clean_up(); 
  }
};


template<class T, class K>
int simple_queue<T,K>::size()
{
  int result = 0;
  _item *pos = first_item;
  while (pos) {
    result++;
    pos = pos->next;
  }
  return result;
}



//**********************************************************************
//A sorted list template class. The list items are sorted in
//increasing order given by "key". This class is similar to the queue
//class. The main difference is that all free items are stored in a
//global linked list which is specified during template instantiation.
//**********************************************************************

template<class T, class K> class fqueue {
  struct _item {
    _item *next, *prev;
    K key;
    T value;
    _item() { };
  };
  _item *first_item;
  static void *free_items; // Note, this pointer is static! Actually,
  // it would be better to pass it in as a template
  // parameter. Unfortunately, gcc currently crashes when a void*
  // pointer is added to the template parameter list.
  
  // Allocates a new item from the free_items list or creates
  // a new one
  static _item *internal_new() {
    if (free_items) {
      _item *nitem = (_item*)free_items;
      free_items = ((_item*)free_items)->next;
      return nitem;
    } else
      return new _item;
  }

  // Removes an item and all following items from the list. Actually,
  // the memory is not "freed" but the item is inserted into the
  // free_items list
  static void internal_delete_chain(void *p) {
    _item *pos = (_item*)p;
    _item *npos = pos;
    while (npos->next)
      npos = npos->next;
    npos->next = (_item*)free_items;
    free_items = pos;
  }

 public:
  // Move item to free_items list
  static void free_item(void *p) {
    _item *pos = (_item*)p;
    pos->next = (_item*)free_items;
    free_items = pos;
  }

  static void *get_new_item() { return (void*)internal_new(); }

  static void clean_up() {
    while (free_items) {
      _item *nitem = ((_item*)free_items)->next;
      delete (_item*)free_items;
      free_items = nitem;
    }
    free_items = NULL;
  }

  fqueue() { first_item = NULL; }

  // Return length of the queue
  int size();

  // Returns handler to first item on the list
  void *start() const { return (void*)&first_item; }

  // Returns handler to first item on the list
  void *begin() const { return (void*)first_item; }

   // Returns next item
  static void *next(void *p) { return ((_item*)p)->next; }
  
  // Returns prevouis item
  static void *prev(void *p) { return ((_item*)p)->prev; }

  // Get empty item
  void *new_item() { return internal_new(); }

  // Returns a reference to the content of a list item
  static T &content(void *p) { return ((_item*)p)->value; }

  // Returns the key value of the item
  static K &key(void *p) { return ((_item*)p)->key; }

  // Inserts a new item into the list. The item is inserted 
  // after the item referenced by "pos".
  static void *insert(void *p, const T &t, const K &key) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;
    new_item->value = t;
    new_item->key = key;
    if (pos->next) {
      new_item->next = pos->next;
      pos->next->prev = new_item;
    }
    pos->next = new_item;
    new_item->prev = pos;

    return (void*)new_item;
  }


  // Creates a new item. The item is inserted 
  // after the item referenced by "p"
  static void *insert(void *p, const K &key) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;
    _item *npos = pos->next;

    new_item->key = key;
    new_item->prev = pos;
    new_item->next = npos;
    if (npos)
      npos->prev = new_item;
    pos->next = new_item;

    return (void*)new_item;
  }

  // Creates a new item. The item is inserted after the item
  // referenced by "p". "p" must point to the end of
  // the queue.
  static void *push_back(void *p, const K &key) { 
    _item *new_item = internal_new();
    _item *pos = (_item*)p;

    new_item->key = key;
    new_item->prev = pos;
    new_item->next = NULL;
    pos->next = new_item;

    return (void*)new_item;
  }

  // Inserts new item "n" after "p" into the queue. "p" must point to
  // the end of the queue.
  static void push_back(void *p, void *n) { 
    _item *new_item = (_item*)n;
    _item *pos = (_item*)p;

    new_item->prev = pos;
    new_item->next = NULL;
    pos->next = new_item;
  }

  // Removes a item. Returns a handler to the next item
  // or NULL if p is the last item.
  static void *remove(void *p) {
    _item *pos = (_item*)p;
    _item *ret = pos->next;
    if (pos->next)
      pos->next->prev = pos->prev;
    pos->prev->next = pos->next;

    free_item(pos);

    return (void*) ret;
  }

  // Removes item p and all following items.
  static void cut_remove(void *p) {
    _item *pos = (_item*)p;
    pos->prev->next = NULL;
    internal_delete_chain(pos);
  }

  // Unlink item from list but do NOT remove it. Returns handler to
  // the next item or NULL if p is the kast item
  static void *unlink(void *p) {
    _item *pos = (_item*)p;
    _item *ret = pos->next;
    if (pos->next)
      pos->next->prev = pos->prev;
    pos->prev->next = pos->next;

    return (void*) ret;
  }

  // Destructor
  ~fqueue() {
    if (first_item)
      cut_remove(first_item);
    clean_up(); 
  }
};


template<class T, class K>
int fqueue<T,K>::size()
{
  int result = 0;
  _item *pos = first_item;
  while (pos) {
    result++;
    pos = pos->next;
  }
  return result;
}




//**********************************************************************
// A simple array template class. The array cannot shrink but several
// arrays may share the same internal data structure in order to save
// space!
// //**********************************************************************

template<class T> class shared_array {
  int length;
  char *array_pointer;

  T* array_data() const { return (T*)(array_pointer + sizeof(int)); }
  int &reference_counter_ref() const { return *(int*)array_pointer; }
  
 public:
  void clean_up() {
    if (array_pointer != NULL) {
      // The first int of array_pointer always point to a reference
      // counter
      if (--reference_counter_ref() == 0)
	free(array_pointer);
    }
    length = 0;
    array_pointer = NULL;
  }

  shared_array() { array_pointer = NULL; length = 0; }

  // Returns # of items on the list
  int size() const { return length; }

  // Returns true if the list is empty
  int is_empty() const { return length == 0; }

  // Returns a reference to the content of a list item
  T &content(const int i) const { return array_data()[i]; }

  // Inserts a new item at the end of the array.
  void push_back(const T &t) {
    // The first int of array_pointer always point to a reference
    // counter
    if (array_pointer != NULL &&
	reference_counter_ref() > 1) {
      reference_counter_ref()--;
      char *new_array_pointer = (char*)malloc(sizeof(T) * (length + 1) + sizeof(int));
      memcpy(new_array_pointer, array_pointer, sizeof(T) * (length++) + sizeof(int));
      array_pointer = new_array_pointer;
    } else
      array_pointer = (char*)realloc(array_pointer, sizeof(T) * ++length + sizeof(int));
    reference_counter_ref() = 1;
    array_data()[length - 1] = t;
  }

  // Makes a copy of array "a". Note that the current instance will
  // use the same array_pointer as "a".
  void link(shared_array &a) {
    clean_up();
    length = a.length;
    array_pointer = a.array_pointer;
    // The first int of array_pointer always point to a reference
    // counter
    reference_counter_ref()++;
  }

  // Returns true if "a" and current instance reference the same
  // array.
  bool is_linked(const shared_array &a) const { return array_pointer == a.array_pointer; }

  void reset() {
    clean_up(); 
  }

  // Destructor
  ~shared_array() { reset(); }
};



/******************************************************
 * Some definitions which are used by the kernel only 
 ******************************************************/
#ifdef KERNEL

// Compare equal operator for array<T> 
template<class T>
inline bool 
is_equal(const shared_array<T> &a, const shared_array<T> &b) 
{
  if (a.size() != b.size()) return false;
  if (a.is_linked(b)) return true;
  for (int i = 0; i < a.size(); i++)
    if (!is_equal(a.content(i), b.content(i)))
      return false;
  return true;
}

  
// Generate hash number from array<T> 
template<class T>
inline unsigned int
get_hash(const shared_array<T> &a) {
  unsigned int num = 0;
  const int UINT_BIT = sizeof(unsigned int) * CHAR_BIT;
  for (int i = 0; i < a.size(); i++)
    num = ((num << 2) || ((UINT_BIT - 2) >> 30)) + get_hash(a.content(i));
  return num;
}

#endif

#endif