This file is indexed.

/usr/include/fst/bi-table.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes for representing a bijective mapping between an arbitrary entry
// of type T and a signed integral ID.

#ifndef FST_LIB_BI_TABLE_H_
#define FST_LIB_BI_TABLE_H_

#include <deque>
#include <memory>
#include <functional>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <fst/memory.h>

namespace fst {

// BI TABLES - these determine a bijective mapping between an
// arbitrary entry of type T and an signed integral ID of type I. The IDs are
// allocated starting from 0 in order.
//
// template <class I, class T>
// class BiTable {
//  public:
//
//   // Required constructors.
//   BiTable();
//
//   // Lookup integer ID from entry. If it doesn't exist and 'insert'
//   / is true, then add it. Otherwise return -1.
//   I FindId(const T &entry, bool insert = true);
//   // Lookup entry from integer ID.
//   const T &FindEntry(I) const;
//   // # of stored entries.
//   I Size() const;
// };

// An implementation using a hash map for the entry to ID mapping.
// H is the hash function and E is the equality function.
// If passed to the constructor, ownership is given to this class.

template <class I, class T, class H, class E = std::equal_to<T>>
class HashBiTable {
 public:
  // Reserves space for 'table_size' elements. If passing H and E to the
  // constructor, this class owns them.
  explicit HashBiTable(size_t table_size = 0, H *h = nullptr, E *e = nullptr) :
      hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()),
      entry2id_(table_size, *h, *e) {
    if (table_size) id2entry_.reserve(table_size);
  }

  HashBiTable(const HashBiTable<I, T, H, E> &table)
      : hash_func_(new H(*table.hash_func_)),
        hash_equal_(new E(*table.hash_equal_)),
        entry2id_(table.entry2id_.begin(), table.entry2id_.end(),
                  table.entry2id_.size(), *hash_func_, *hash_equal_),
        id2entry_(table.id2entry_) {}

  I FindId(const T &entry, bool insert = true) {
    if (!insert) {
      const auto it = entry2id_.find(entry);
      return it == entry2id_.end() ? -1 : it->second - 1;
    }
    I &id_ref = entry2id_[entry];
    if (id_ref == 0) {  // T not found  store and assign it a new ID
      id2entry_.push_back(entry);
      id_ref = id2entry_.size();
    }
    return id_ref - 1;  // NB: id_ref = ID + 1
  }

  const T &FindEntry(I s) const { return id2entry_[s]; }

  I Size() const { return id2entry_.size(); }

  // TODO(riley): Add fancy clear-to-size as in CompactHashBiTable.
  void Clear() {
    entry2id_.clear();
    id2entry_.clear();
  }

 private:
  std::unique_ptr<H> hash_func_;
  std::unique_ptr<E> hash_equal_;
  std::unordered_map<T, I, H, E> entry2id_;
  std::vector<T> id2entry_;

  void operator=(const HashBiTable<I, T, H, E> &table);  // disallow
};

// Enables alternative hash set representations below.
typedef enum { HS_STL = 0, HS_DENSE = 1, HS_SPARSE = 2 } HSType;

// Default hash set is STL hash_set
template <class K, class H, class E, HSType>
struct HashSet : public std::unordered_set<K, H, E, PoolAllocator<K>> {
  HashSet(size_t n = 0, const H &h = H(), const E &e = E())
      : std::unordered_set<K, H, E, PoolAllocator<K>>(n, h, e) {}

  void rehash(size_t n) {}
};

// An implementation using a hash set for the entry to ID mapping.
// The hash set holds 'keys' which are either the ID or kCurrentKey.
// These keys can be mapped to entrys either by looking up in the
// entry vector or, if kCurrentKey, in current_entry_ member. The hash
// and key equality functions map to entries first. H
// is the hash function and E is the equality function. If passed to
// the constructor, ownership is given to this class.
template <class I, class T, class H, class E = std::equal_to<T>,
          HSType HS = HS_DENSE>
class CompactHashBiTable {
 public:
  friend class HashFunc;
  friend class HashEqual;

  // Reserves space for 'table_size' elements. If passing H and E to the
  // constructor, this class owns them.
  explicit CompactHashBiTable(size_t table_size = 0, H *h = nullptr,
                              E *e = nullptr) :
        hash_func_(h ? h : new H()), hash_equal_(e ? e : new E()),
        compact_hash_func_(*this), compact_hash_equal_(*this),
        keys_(table_size, compact_hash_func_, compact_hash_equal_) {
    if (table_size) id2entry_.reserve(table_size);
  }

  CompactHashBiTable(const CompactHashBiTable<I, T, H, E, HS> &table)
      : hash_func_(new H(*table.hash_func_)),
        hash_equal_(new E(*table.hash_equal_)),
        compact_hash_func_(*this), compact_hash_equal_(*this),
        keys_(table.keys_.size(), compact_hash_func_, compact_hash_equal_),
        id2entry_(table.id2entry_) {
    keys_.insert(table.keys_.begin(), table.keys_.end());
  }

  I FindId(const T &entry, bool insert = true) {
    current_entry_ = &entry;
    const auto it = keys_.find(kCurrentKey);
    if (it == keys_.end()) {  // T not found
      if (insert) {           // store and assign it a new ID
        I key = id2entry_.size();
        id2entry_.push_back(entry);
        keys_.insert(key);
        return key;
      } else {
        return -1;
      }
    } else {
      return *it;
    }
  }

  const T &FindEntry(I s) const { return id2entry_[s]; }

  I Size() const { return id2entry_.size(); }

  // Clear content. With argument, erases last n IDs.
  void Clear(ssize_t n = -1) {
    if (n < 0 || n >= id2entry_.size()) {  // Clear completely.
      keys_.clear();
      id2entry_.clear();
    } else if (n == id2entry_.size() - 1) {  // Leave only key 0
      const T entry = FindEntry(0);
      keys_.clear();
      id2entry_.clear();
      FindId(entry, true);
    } else {
      while (n-- > 0) {
        I key = id2entry_.size() - 1;
        keys_.erase(key);
        id2entry_.pop_back();
      }
      keys_.rehash(0);
    }
  }

 private:
  static const I kCurrentKey;  // -1
  static const I kEmptyKey;    // -2
  static const I kDeletedKey;  // -3

  class HashFunc {
   public:
    HashFunc(const CompactHashBiTable &ht) : ht_(&ht) {}

    size_t operator()(I k) const {
      if (k >= kCurrentKey) {
        return (*ht_->hash_func_)(ht_->Key2Entry(k));
      } else {
        return 0;
      }
    }

   private:
    const CompactHashBiTable *ht_;
  };

  class HashEqual {
   public:
    HashEqual(const CompactHashBiTable &ht) : ht_(&ht) {}

    bool operator()(I k1, I k2) const {
      if (k1 >= kCurrentKey && k2 >= kCurrentKey) {
        return (*ht_->hash_equal_)(ht_->Key2Entry(k1), ht_->Key2Entry(k2));
      } else {
        return k1 == k2;
      }
    }

   private:
    const CompactHashBiTable *ht_;
  };

  typedef HashSet<I, HashFunc, HashEqual, HS> KeyHashSet;

  const T &Key2Entry(I k) const {
    if (k == kCurrentKey)
      return *current_entry_;
    else
      return id2entry_[k];
  }

  std::unique_ptr<H> hash_func_;
  std::unique_ptr<E> hash_equal_;
  HashFunc compact_hash_func_;
  HashEqual compact_hash_equal_;
  KeyHashSet keys_;
  std::vector<T> id2entry_;
  const T *current_entry_;

  void operator=(const CompactHashBiTable<I, T, H, E, HS> &table);  // disallow
};

template <class I, class T, class H, class E, HSType HS>
const I CompactHashBiTable<I, T, H, E, HS>::kCurrentKey = -1;

template <class I, class T, class H, class E, HSType HS>
const I CompactHashBiTable<I, T, H, E, HS>::kEmptyKey = -2;

template <class I, class T, class H, class E, HSType HS>
const I CompactHashBiTable<I, T, H, E, HS>::kDeletedKey = -3;

// An implementation using a vector for the entry to ID mapping.
// It is passed a function object FP that should fingerprint entries
// uniquely to an integer that can used as a vector index. Normally,
// VectorBiTable constructs the FP object.  The user can instead
// pass in this object; in that case, VectorBiTable takes its
// ownership.
template <class I, class T, class FP>
class VectorBiTable {
 public:
  // Reserves space for 'table_size' elements. If passing FP argument to the
  // constructor, this class owns it.
  explicit VectorBiTable(FP *fp = nullptr, size_t table_size = 0) :
      fp_(fp ? fp : new FP()) {
    if (table_size) id2entry_.reserve(table_size);
  }

  VectorBiTable(const VectorBiTable<I, T, FP> &table)
      : fp_(new FP(*table.fp_)), fp2id_(table.fp2id_),
        id2entry_(table.id2entry_) {}

  I FindId(const T &entry, bool insert = true) {
    ssize_t fp = (*fp_)(entry);
    if (fp >= fp2id_.size()) fp2id_.resize(fp + 1);
    I &id_ref = fp2id_[fp];
    if (id_ref == 0) {  // T not found
      if (insert) {     // store and assign it a new ID
        id2entry_.push_back(entry);
        id_ref = id2entry_.size();
      } else {
        return -1;
      }
    }
    return id_ref - 1;  // NB: id_ref = ID + 1
  }

  const T &FindEntry(I s) const { return id2entry_[s]; }

  I Size() const { return id2entry_.size(); }

  const FP &Fingerprint() const { return *fp_; }

 private:
  std::unique_ptr<FP> fp_;
  std::vector<I> fp2id_;
  std::vector<T> id2entry_;

  void operator=(const VectorBiTable<I, T, FP> &table);  // disallow
};

// An implementation using a vector and a compact hash table. The
// selecting functor S returns true for entries to be hashed in the
// vector.  The fingerprinting functor FP returns a unique fingerprint
// for each entry to be hashed in the vector (these need to be
// suitable for indexing in a vector).  The hash functor H is used
// when hashing entry into the compact hash table.  If passed to the
// constructor, ownership is given to this class.
template <class I, class T, class S, class FP, class H, HSType HS = HS_DENSE>
class VectorHashBiTable {
 public:
  friend class HashFunc;
  friend class HashEqual;

  explicit VectorHashBiTable(S *s, FP *fp, H *h, size_t vector_size = 0,
                             size_t entry_size = 0)
      : selector_(s), fp_(fp), h_(h), hash_func_(*this), hash_equal_(*this),
        keys_(0, hash_func_, hash_equal_) {
    if (vector_size) fp2id_.reserve(vector_size);
    if (entry_size) id2entry_.reserve(entry_size);
  }

  VectorHashBiTable(const VectorHashBiTable<I, T, S, FP, H, HS> &table)
      : selector_(new S(table.s_)), fp_(new FP(*table.fp_)),
        h_(new H(*table.h_)), id2entry_(table.id2entry_),
        fp2id_(table.fp2id_), hash_func_(*this), hash_equal_(*this),
        keys_(table.keys_.size(), hash_func_, hash_equal_) {
    keys_.insert(table.keys_.begin(), table.keys_.end());
  }

  I FindId(const T &entry, bool insert = true) {
    if ((*selector_)(entry)) {  // Use the vector if 'selector_(entry) == true'
      uint64 fp = (*fp_)(entry);
      if (fp2id_.size() <= fp) fp2id_.resize(fp + 1, 0);
      if (fp2id_[fp] == 0) {  // T not found
        if (insert) {         // store and assign it a new ID
          id2entry_.push_back(entry);
          fp2id_[fp] = id2entry_.size();
        } else {
          return -1;
        }
      }
      return fp2id_[fp] - 1;  // NB: assoc_value = ID + 1
    } else {                  // Use the hash table otherwise.
      current_entry_ = &entry;
      const auto it = keys_.find(kCurrentKey);
      if (it == keys_.end()) {
        if (insert) {
          I key = id2entry_.size();
          id2entry_.push_back(entry);
          keys_.insert(key);
          return key;
        } else {
          return -1;
        }
      } else {
        return *it;
      }
    }
  }

  const T &FindEntry(I s) const { return id2entry_[s]; }

  I Size() const { return id2entry_.size(); }

  const S &Selector() const { return *selector_; }

  const FP &Fingerprint() const { return *fp_; }

  const H &Hash() const { return *h_; }

 private:
  static const I kCurrentKey;  // -1
  static const I kEmptyKey;    // -2

  class HashFunc {
   public:
    HashFunc(const VectorHashBiTable &ht) : ht_(&ht) {}

    size_t operator()(I k) const {
      if (k >= kCurrentKey) {
        return (*(ht_->h_))(ht_->Key2Entry(k));
      } else {
        return 0;
      }
    }

   private:
    const VectorHashBiTable *ht_;
  };

  class HashEqual {
   public:
    HashEqual(const VectorHashBiTable &ht) : ht_(&ht) {}

    bool operator()(I k1, I k2) const {
      if (k1 >= kCurrentKey && k2 >= kCurrentKey) {
        return ht_->Key2Entry(k1) == ht_->Key2Entry(k2);
      } else {
        return k1 == k2;
      }
    }

   private:
    const VectorHashBiTable *ht_;
  };

  typedef HashSet<I, HashFunc, HashEqual, HS> KeyHashSet;

  const T &Key2Entry(I k) const {
    if (k == kCurrentKey)
      return *current_entry_;
    else
      return id2entry_[k];
  }

  std::unique_ptr<S> selector_;  // Returns true if entry hashed into vector.
  std::unique_ptr<FP> fp_;       // Fingerprint used when hashing into vector.
  std::unique_ptr<H> h_;         // Hash fnc used when hashing into hash_set.

  std::vector<T> id2entry_;  // Maps state IDs to entry
  std::vector<I> fp2id_;     // Maps entry fingerprints to IDs

  // Compact implementation of the hash table mapping entrys to
  // state IDs using the hash function 'h_'
  HashFunc hash_func_;
  HashEqual hash_equal_;
  KeyHashSet keys_;
  const T *current_entry_;

  // disallow
  void operator=(const VectorHashBiTable<I, T, S, FP, H, HS> &table);
};

template <class I, class T, class S, class FP, class H, HSType HS>
const I VectorHashBiTable<I, T, S, FP, H, HS>::kCurrentKey = -1;

template <class I, class T, class S, class FP, class H, HSType HS>
const I VectorHashBiTable<I, T, S, FP, H, HS>::kEmptyKey = -3;

// An implementation using a hash map for the entry to ID
// mapping. This version permits erasing of arbitrary states.  The
// entry T must have == defined and its default constructor must
// produce a entry that will never be seen. F is the hash function.
template <class I, class T, class F>
class ErasableBiTable {
 public:
  ErasableBiTable() : first_(0) {}

  I FindId(const T &entry, bool insert = true) {
    I &id_ref = entry2id_[entry];
    if (id_ref == 0) {  // T not found
      if (insert) {     // store and assign it a new ID
        id2entry_.push_back(entry);
        id_ref = id2entry_.size() + first_;
      } else {
        return -1;
      }
    }
    return id_ref - 1;  // NB: id_ref = ID + 1
  }

  const T &FindEntry(I s) const { return id2entry_[s - first_]; }

  I Size() const { return id2entry_.size(); }

  void Erase(I s) {
    T &entry = id2entry_[s - first_];
    const auto it = entry2id_.find(entry);
    entry2id_.erase(it);
    id2entry_[s - first_] = empty_entry_;
    while (!id2entry_.empty() && id2entry_.front() == empty_entry_) {
      id2entry_.pop_front();
      ++first_;
    }
  }

 private:
  std::unordered_map<T, I, F> entry2id_;
  std::deque<T> id2entry_;
  const T empty_entry_;
  I first_;  // I of first element in the deque;

  // disallow
  void operator=(const ErasableBiTable<I, T, F> &table);  // disallow
};

}  // namespace fst

#endif  // FST_LIB_BI_TABLE_H__