This file is indexed.

/usr/include/fst/compact-fst.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST Class for memory-efficient representation of common types of
// FSTs: linear automata, acceptors, unweighted FSTs, ...

#ifndef FST_LIB_COMPACT_FST_H_
#define FST_LIB_COMPACT_FST_H_

#include <iterator>
#include <utility>
#include <vector>

#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/fst-decl.h>  // For optional argument declarations
#include <fst/mapped-file.h>
#include <fst/matcher.h>
#include <fst/test-properties.h>
#include <fst/util.h>


namespace fst {

struct CompactFstOptions : public CacheOptions {
  // CompactFst default caching behaviour is to do no caching. Most
  // compactors are cheap and therefore we save memory by not doing
  // caching.
  CompactFstOptions() : CacheOptions(true, 0) {}
  CompactFstOptions(const CacheOptions &opts) : CacheOptions(opts) {}
};

// Compactor Interface - class determinies how arcs and final weights
// are compacted and expanded.
//
// Final weights are treated as transitions to the superfinal state,
// i.e. ilabel = olabel = kNoLabel and nextstate = kNoStateId.
//
// There are two types of compactors:
//
// * Fixed out-degree compactors: 'compactor.Size()' returns a
// positive integer 's'. An FST can be compacted by this compactor
// only if each state has exactly 's' outgoing transitions (counting a
// non-Zero() final weight as a transition). A typical example is a
// compactor for string FSTs, i.e. 's == 1'.
//
// * Variable out-degree compactors: 'compactor.Size() == -1'. There
// are no out-degree restrictions for these compactors.
//
//
// class Compactor {
//  public:
//   // Element is the type of the compacted transitions.
//   typedef ... Element;
//   // Return the compacted representation of a transition 'arc'
//   // at a state 's'.
//   Element Compact(StateId s, const Arc &arc);
//   // Return the transition at state 's' represented by the compacted
//   // transition 'e'.
//   Arc Expand(StateId s, const Element &e) const;
//   // Return -1 for variable out-degree compactors, and the mandatory
//   // out-degree otherwise.
//   ssize_t Size() const;
//   // Test whether 'fst' can be compacted by this compactor.
//   bool Compatible(const Fst<A> &fst) const;
//   // Return the properties that are always true for an fst
//   // compacted using this compactor
//   uint64 Properties() const;
//   // Return a string identifying the type of compactor.
//   static const string &Type();
//   // Write a compactor to a file.
//   bool Write(std::ostream &strm) const;
//   // Read a compactor from a file.
//   static Compactor *Read(std::istream &strm);
//   // Default constructor (optional, see comment below).
//   Compactor();
// };
//
// The default constructor is only required for FST_REGISTER to work
// (i.e. enabling Convert() and the command-line utilities to work
// with this new compactor). However, a default constructor always
// needs to be specified for this code to compile, but one can have it
// simply raise an error when called:
//
// Compactor::Compactor() {
//   FSTERROR() << "Compactor: No default constructor";
// }

// Default implementation data for Compact Fst, which can shared
// between otherwise independent copies.
//
// The implementation contains two arrays: 'states_' and 'compacts_'.
//
// For fixed out-degree compactors, the 'states_' array is unallocated.
// The 'compacts_' contains the compacted transitions. Its size is
// 'ncompacts_'. The outgoing transitions at a given state are stored
// consecutively. For a given state 's', its 'compactor.Size()' outgoing
// transitions (including superfinal transition when 's' is final), are
// stored in position ['s*compactor.Size()', '(s+1)*compactor.Size()').
//
// For variable out-degree compactors, the states_ array has size
// 'nstates_ + 1' and contains pointers to positions into 'compacts_'.
// For a given state 's', the compacted transitions of 's' are
// stored in positions [ 'states_[s]', 'states_[s + 1]' ) in 'compacts_'.
// By convention, 'states_[nstates_] == ncompacts_'.
//
// In both cases, the superfinal transitions (when 's' is final, i.e.
// 'Final(s) != Weight::Zero()') are stored first.
//
// The unsigned type U is used to represent indices into the compacts_
// array.
template <class E, class U>
class DefaultCompactStore {
 public:
  typedef E CompactElement;
  typedef U Unsigned;

  DefaultCompactStore()
      : states_region_(0),
        compacts_region_(0),
        states_(0),
        compacts_(0),
        nstates_(0),
        ncompacts_(0),
        narcs_(0),
        start_(kNoStateId),
        error_(false) {}

  template <class A, class Compactor>
  DefaultCompactStore(const Fst<A> &fst, const Compactor &compactor);

  template <class Iterator, class Compactor>
  DefaultCompactStore(const Iterator &begin, const Iterator &end,
                      const Compactor &compactor);

  ~DefaultCompactStore() {
    if (states_region_ == nullptr) {
      delete[] states_;
    }
    delete states_region_;
    if (compacts_region_ == nullptr) {
      delete[] compacts_;
    }
    delete compacts_region_;
  }

  template <class Compactor>
  static DefaultCompactStore<E, U> *Read(std::istream &strm,
                                         const FstReadOptions &opts,
                                         const FstHeader &hdr,
                                         const Compactor &compactor);

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const;

  Unsigned States(ssize_t i) const { return states_[i]; }
  const CompactElement &Compacts(size_t i) const { return compacts_[i]; }
  size_t NumStates() const { return nstates_; }
  size_t NumCompacts() const { return ncompacts_; }
  size_t NumArcs() const { return narcs_; }
  ssize_t Start() const { return start_; }

  bool Error() const { return error_; }

  // Returns a string identifying the type of data storage container.
  static const string &Type();

 private:
  MappedFile *states_region_;
  MappedFile *compacts_region_;
  Unsigned *states_;
  CompactElement *compacts_;
  size_t nstates_;
  size_t ncompacts_;
  size_t narcs_;
  ssize_t start_;
  bool error_;
};

template <class E, class U>
template <class A, class C>
DefaultCompactStore<E, U>::DefaultCompactStore(const Fst<A> &fst,
                                               const C &compactor)
    : states_region_(0),
      compacts_region_(0),
      states_(0),
      compacts_(0),
      nstates_(0),
      ncompacts_(0),
      narcs_(0),
      start_(kNoStateId),
      error_(false) {
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  start_ = fst.Start();
  // Count # of states and arcs.
  StateId nfinals = 0;
  for (StateIterator<Fst<A>> siter(fst); !siter.Done(); siter.Next()) {
    ++nstates_;
    StateId s = siter.Value();
    for (ArcIterator<Fst<A>> aiter(fst, s); !aiter.Done(); aiter.Next())
      ++narcs_;
    if (fst.Final(s) != Weight::Zero()) ++nfinals;
  }
  if (compactor.Size() == -1) {
    states_ = new Unsigned[nstates_ + 1];
    ncompacts_ = narcs_ + nfinals;
    compacts_ = new CompactElement[ncompacts_];
    states_[nstates_] = ncompacts_;
  } else {
    states_ = 0;
    ncompacts_ = nstates_ * compactor.Size();
    if ((narcs_ + nfinals) != ncompacts_) {
      FSTERROR() << "DefaultCompactStore: Compactor incompatible with Fst";
      error_ = true;
      return;
    }
    compacts_ = new CompactElement[ncompacts_];
  }
  size_t pos = 0, fpos = 0;
  for (StateId s = 0; s < nstates_; ++s) {
    fpos = pos;
    if (compactor.Size() == -1) states_[s] = pos;
    if (fst.Final(s) != Weight::Zero())
      compacts_[pos++] =
          compactor.Compact(s, A(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
    for (ArcIterator<Fst<A>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
      compacts_[pos++] = compactor.Compact(s, aiter.Value());
    }
    if ((compactor.Size() != -1) && ((pos - fpos) != compactor.Size())) {
      FSTERROR() << "DefaultCompactStore: Compactor incompatible with Fst";
      error_ = true;
      return;
    }
  }
  if (pos != ncompacts_) {
    FSTERROR() << "DefaultCompactStore: Compactor incompatible with Fst";
    error_ = true;
    return;
  }
}

template <class E, class U>
template <class Iterator, class C>
DefaultCompactStore<E, U>::DefaultCompactStore(const Iterator &begin,
                                               const Iterator &end,
                                               const C &compactor)
    : states_region_(0),
      compacts_region_(0),
      states_(0),
      compacts_(0),
      nstates_(0),
      ncompacts_(0),
      narcs_(0),
      start_(kNoStateId),
      error_(false) {
  typedef typename C::Arc Arc;
  typedef typename Arc::Weight Weight;
  if (compactor.Size() != -1) {
    ncompacts_ = std::distance(begin, end);
    if (compactor.Size() == 1) {
      // For strings, allow implicit final weight.
      // Empty input is the empty string.
      if (ncompacts_ == 0) {
        ++ncompacts_;
      } else {
        Arc arc = compactor.Expand(ncompacts_ - 1, *(begin + (ncompacts_ - 1)));
        if (arc.ilabel != kNoLabel) ++ncompacts_;
      }
    }
    if (ncompacts_ % compactor.Size()) {
      FSTERROR() << "DefaultCompactStore: Size of input container incompatible"
                 << " with compactor";
      error_ = true;
      return;
    }
    if (ncompacts_ == 0) return;
    start_ = 0;
    nstates_ = ncompacts_ / compactor.Size();
    compacts_ = new CompactElement[ncompacts_];
    size_t i = 0;
    Iterator it = begin;
    for (; it != end; ++it, ++i) {
      compacts_[i] = *it;
      if (compactor.Expand(i, *it).ilabel != kNoLabel) ++narcs_;
    }
    if (i < ncompacts_)
      compacts_[i] = compactor.Compact(
          i, Arc(kNoLabel, kNoLabel, Weight::One(), kNoStateId));
  } else {
    if (std::distance(begin, end) == 0) return;
    // Count # of states, arcs and compacts.
    Iterator it = begin;
    for (size_t i = 0; it != end; ++it, ++i) {
      Arc arc = compactor.Expand(i, *it);
      if (arc.ilabel != kNoLabel) {
        ++narcs_;
        ++ncompacts_;
      } else {
        ++nstates_;
        if (arc.weight != Weight::Zero()) ++ncompacts_;
      }
    }
    start_ = 0;
    compacts_ = new CompactElement[ncompacts_];
    states_ = new Unsigned[nstates_ + 1];
    states_[nstates_] = ncompacts_;
    size_t i = 0, s = 0;
    for (it = begin; it != end; ++it) {
      Arc arc = compactor.Expand(i, *it);
      if (arc.ilabel != kNoLabel) {
        compacts_[i++] = *it;
      } else {
        states_[s++] = i;
        if (arc.weight != Weight::Zero()) compacts_[i++] = *it;
      }
    }
    if ((s != nstates_) || (i != ncompacts_)) {
      FSTERROR() << "DefaultCompactStore: Ill-formed input container";
      error_ = true;
      return;
    }
  }
}

template <class E, class U>
template <class C>
DefaultCompactStore<E, U> *DefaultCompactStore<E, U>::Read(
    std::istream &strm, const FstReadOptions &opts, const FstHeader &hdr,
    const C &compactor) {
  DefaultCompactStore<E, U> *data = new DefaultCompactStore<E, U>();
  data->start_ = hdr.Start();
  data->nstates_ = hdr.NumStates();
  data->narcs_ = hdr.NumArcs();

  if (compactor.Size() == -1) {
    if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
                 << opts.source;
      delete data;
      return 0;
    }
    size_t b = (data->nstates_ + 1) * sizeof(Unsigned);
    data->states_region_ = MappedFile::Map(
        &strm, opts.mode == FstReadOptions::MAP, opts.source, b);
    if (!strm || data->states_region_ == nullptr) {
      LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
      delete data;
      return 0;
    }
    data->states_ =
        static_cast<Unsigned *>(data->states_region_->mutable_data());
  } else {
    data->states_ = 0;
  }
  data->ncompacts_ = compactor.Size() == -1 ? data->states_[data->nstates_]
                                            : data->nstates_ * compactor.Size();
  if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
    LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
               << opts.source;
    delete data;
    return 0;
  }
  size_t b = data->ncompacts_ * sizeof(CompactElement);
  data->compacts_region_ =
      MappedFile::Map(&strm, opts.mode == FstReadOptions::MAP, opts.source, b);
  if (!strm || data->compacts_region_ == nullptr) {
    LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
    delete data;
    return 0;
  }
  data->compacts_ =
      static_cast<CompactElement *>(data->compacts_region_->mutable_data());
  return data;
}

template <class E, class U>
bool DefaultCompactStore<E, U>::Write(std::ostream &strm,
                                      const FstWriteOptions &opts) const {
  if (states_) {
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
                 << opts.source;
      return false;
    }
    strm.write(reinterpret_cast<char *>(states_),
               (nstates_ + 1) * sizeof(Unsigned));
  }
  if (opts.align && !AlignOutput(strm)) {
    LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
               << opts.source;
    return false;
  }
  strm.write(reinterpret_cast<char *>(compacts_),
             ncompacts_ * sizeof(CompactElement));

  strm.flush();
  if (!strm) {
    LOG(ERROR) << "DefaultCompactStore::Write: Write failed: " << opts.source;
    return false;
  }
  return true;
}

template <class E, class U>
const string &DefaultCompactStore<E, U>::Type() {
  static const string type = "compact";
  return type;
}

template <class A, class C, class U, class S>
class CompactFst;
template <class F, class G>
void Cast(const F &, G *);

// Implementation class for CompactFst, which contains parametrizeable
// Fst data storage (DefaultCompactStore by default) and Fst cache.
template <class A, class C, class U,
          class S = DefaultCompactStore<typename C::Element, U>>
class CompactFstImpl : public CacheImpl<A> {
 public:
  using FstImpl<A>::SetType;
  using FstImpl<A>::SetProperties;
  using FstImpl<A>::Properties;
  using FstImpl<A>::SetInputSymbols;
  using FstImpl<A>::SetOutputSymbols;
  using FstImpl<A>::WriteHeader;

  using CacheImpl<A>::PushArc;
  using CacheImpl<A>::HasArcs;
  using CacheImpl<A>::HasFinal;
  using CacheImpl<A>::HasStart;
  using CacheImpl<A>::SetArcs;
  using CacheImpl<A>::SetFinal;
  using CacheImpl<A>::SetStart;

  typedef A Arc;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef C Compactor;
  typedef typename C::Element CompactElement;
  typedef U Unsigned;
  typedef S DataStorage;

  CompactFstImpl()
      : CacheImpl<A>(CompactFstOptions()),
        compactor_(),
        data_() {
    string type = "compact";
    if (sizeof(U) != sizeof(uint32)) {
      string size;
      Int64ToStr(8 * sizeof(U), &size);
      type += size;
    }
    type += "_";
    type += C::Type();
    if (DataStorage::Type() != "compact") {
      type += "_";
      type += DataStorage::Type();
    }
    SetType(type);
    SetProperties(kNullProperties | kStaticProperties);
  }

  CompactFstImpl(const Fst<Arc> &fst, std::shared_ptr<C> compactor,
                 const CompactFstOptions &opts,
                 std::shared_ptr<DataStorage> data)
      : CacheImpl<A>(opts), compactor_(compactor) {
    Init(fst, data);
  }

  template <class Iterator>
  CompactFstImpl(const Iterator &b, const Iterator &e,
                 std::shared_ptr<C> compactor,
                 const CompactFstOptions &opts)
      : CacheImpl<A>(opts),
        compactor_(compactor) {
    Init(b, e);
  }

  CompactFstImpl(const CompactFstImpl<A, C, U, S> &impl)
      : CacheImpl<A>(impl),
        compactor_(impl.compactor_ == nullptr ?
                   nullptr :
                   std::make_shared<C>(*impl.compactor_)),
        data_(impl.data_) {
    SetType(impl.Type());
    SetProperties(impl.Properties());
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  ~CompactFstImpl() override {}

  StateId Start() {
    if (!HasStart()) {
      SetStart(data_->Start());
    }
    return CacheImpl<A>::Start();
  }

  Weight Final(StateId s) {
    if (HasFinal(s)) return CacheImpl<A>::Final(s);
    Arc arc(kNoLabel, kNoLabel, Weight::Zero(), kNoStateId);
    if ((compactor_->Size() != -1) ||
        (data_->States(s) != data_->States(s + 1)))
      arc = ComputeArc(s, compactor_->Size() == -1 ? data_->States(s)
                                                   : s * compactor_->Size());
    return arc.ilabel == kNoLabel ? arc.weight : Weight::Zero();
  }

  StateId NumStates() const {
    if (Properties(kError)) return 0;
    return data_->NumStates();
  }

  size_t NumArcs(StateId s) {
    if (HasArcs(s)) return CacheImpl<A>::NumArcs(s);
    Unsigned i, num_arcs;
    if (compactor_->Size() == -1) {
      i = data_->States(s);
      num_arcs = data_->States(s + 1) - i;
    } else {
      i = s * compactor_->Size();
      num_arcs = compactor_->Size();
    }
    if (num_arcs > 0) {
      const A &arc = ComputeArc(s, i, kArcILabelValue);
      if (arc.ilabel == kNoStateId) {
        --num_arcs;
      }
    }
    return num_arcs;
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s) && !Properties(kILabelSorted)) Expand(s);
    if (HasArcs(s)) return CacheImpl<A>::NumInputEpsilons(s);
    return CountEpsilons(s, false);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s) && !Properties(kOLabelSorted)) Expand(s);
    if (HasArcs(s)) return CacheImpl<A>::NumOutputEpsilons(s);
    return CountEpsilons(s, true);
  }

  size_t CountEpsilons(StateId s, bool output_epsilons) {
    size_t begin =
        compactor_->Size() == -1 ? data_->States(s) : s * compactor_->Size();
    size_t end = compactor_->Size() == -1 ? data_->States(s + 1)
                                          : (s + 1) * compactor_->Size();
    size_t num_eps = 0;
    for (size_t i = begin; i < end; ++i) {
      const A &arc =
          ComputeArc(s, i, output_epsilons ? kArcOLabelValue : kArcILabelValue);
      const typename A::Label &label =
          (output_epsilons ? arc.olabel : arc.ilabel);
      if (label == kNoLabel)
        continue;
      else if (label > 0)
        break;
      ++num_eps;
    }
    return num_eps;
  }

  static CompactFstImpl<A, C, U, S> *Read(std::istream &strm,
                                          const FstReadOptions &opts) {
    CompactFstImpl<A, C, U, S> *impl = new CompactFstImpl<A, C, U, S>();
    FstHeader hdr;
    if (!impl->ReadHeader(strm, opts, kMinFileVersion, &hdr)) {
      delete impl;
      return 0;
    }

    // Ensures compatibility
    if (hdr.Version() == kAlignedFileVersion)
      hdr.SetFlags(hdr.GetFlags() | FstHeader::IS_ALIGNED);

    impl->compactor_ = std::shared_ptr<C>(C::Read(strm));
    if (!impl->compactor_) {
      delete impl;
      return nullptr;
    }
    impl->data_ = std::shared_ptr<DataStorage>(
        DataStorage::Read(strm, opts, hdr, *impl->compactor_));
    if (!impl->data_) {
      delete impl;
      return nullptr;
    }
    return impl;
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
    FstHeader hdr;
    hdr.SetStart(data_->Start());
    hdr.SetNumStates(data_->NumStates());
    hdr.SetNumArcs(data_->NumArcs());

    // Ensures compatibility
    int file_version = opts.align ? kAlignedFileVersion : kFileVersion;
    WriteHeader(strm, opts, file_version, &hdr);
    compactor_->Write(strm);
    return data_->Write(strm, opts);
  }

  // Provide information needed for generic state iterator
  void InitStateIterator(StateIteratorData<A> *data) const {
    data->base = 0;
    data->nstates = data_->NumStates();
  }

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<A>::InitArcIterator(s, data);
  }

  Arc ComputeArc(StateId s, Unsigned i, uint32 f = kArcValueFlags) const {
    return compactor_->Expand(s, data_->Compacts(i), f);
  }

  void Expand(StateId s) {
    size_t begin =
        compactor_->Size() == -1 ? data_->States(s) : s * compactor_->Size();
    size_t end = compactor_->Size() == -1 ? data_->States(s + 1)
                                          : (s + 1) * compactor_->Size();
    for (size_t i = begin; i < end; ++i) {
      const Arc &arc = ComputeArc(s, i);
      if (arc.ilabel == kNoLabel)
        SetFinal(s, arc.weight);
      else
        PushArc(s, arc);
    }
    if (!HasFinal(s)) SetFinal(s, Weight::Zero());
    SetArcs(s);
  }

  template <class Iterator>
  void SetCompactElements(const Iterator &b, const Iterator &e) {
    SetProperties(kStaticProperties | compactor_->Properties());
    data_ = std::make_shared<DataStorage>(b, e, *compactor_);
    if (data_->Error()) SetProperties(kError, kError);
  }

  const C *GetCompactor() const { return compactor_.get(); }
  std::shared_ptr<C> SharedCompactor() const { return compactor_; }
  const DataStorage *Data() const { return data_.get(); }
  std::shared_ptr<DataStorage> SharedData() const { return data_; }

  // Properties always true of this Fst class
  static const uint64 kStaticProperties = kExpanded;

 protected:
  template <class OtherA, class OtherC>
  explicit CompactFstImpl(const CompactFstImpl<OtherA, OtherC, U, S> &impl)
      : CacheImpl<A>(CacheOptions(impl.GetCacheGc(), impl.GetCacheLimit())),
        compactor_(std::make_shared<C>(*impl.GetCompactor())),
        data_(impl.SharedData()) {
    SetType(impl.Type());
    SetProperties(impl.Properties());
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

 private:
  friend class CompactFst<A, C, U, S>;  // allow access during write.

  void Init(const Fst<Arc> &fst, std::shared_ptr<DataStorage> data) {
    string type = "compact";
    if (sizeof(U) != sizeof(uint32)) {
      string size;
      Int64ToStr(8 * sizeof(U), &size);
      type += size;
    }
    type += "_";
    type += compactor_->Type();
    if (DataStorage::Type() != "compact") {
      type += "_";
      type += DataStorage::Type();
    }
    SetType(type);
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
    if (data != nullptr)
      data_ = data;
    else
      data_ = std::make_shared<DataStorage>(fst, *compactor_);
    if (data_->Error()) SetProperties(kError, kError);
    uint64 copy_properties = fst.Properties(kMutable, false) ?
        fst.Properties(kCopyProperties, true):
        CheckProperties(fst,
                        kCopyProperties & ~kWeightedCycles & ~kUnweightedCycles,
                        kCopyProperties);
    if ((copy_properties & kError) || !compactor_->Compatible(fst)) {
      FSTERROR() << "CompactFstImpl: Input Fst incompatible with compactor";
      SetProperties(kError, kError);
      return;
    }
    SetProperties(copy_properties | kStaticProperties);
  }

  template <class Iterator>
  void Init(const Iterator &b, const Iterator &e) {
    string type = "compact";
    if (sizeof(U) != sizeof(uint32)) {
      string size;
      Int64ToStr(8 * sizeof(U), &size);
      type += size;
    }
    type += "_";
    type += compactor_->Type();
    SetType(type);
    SetProperties(kStaticProperties | compactor_->Properties());
    data_ = std::make_shared<DataStorage>(b, e, *compactor_);
    if (data_->Error()) SetProperties(kError, kError);
  }

  // Current unaligned file format version
  static const int kFileVersion = 2;
  // Current aligned file format version
  static const int kAlignedFileVersion = 1;
  // Minimum file format version supported
  static const int kMinFileVersion = 1;

  std::shared_ptr<C> compactor_;
  std::shared_ptr<DataStorage> data_;
};

template <class A, class C, class U, class S>
const uint64 CompactFstImpl<A, C, U, S>::kStaticProperties;
template <class A, class C, class U, class S>
const int CompactFstImpl<A, C, U, S>::kFileVersion;
template <class A, class C, class U, class S>
const int CompactFstImpl<A, C, U, S>::kAlignedFileVersion;
template <class A, class C, class U, class S>
const int CompactFstImpl<A, C, U, S>::kMinFileVersion;

// CompactFst.  This class attaches interface to implementation and
// handles reference counting, delegating most methods to
// ImplToExpandedFst. The unsigned type U is used to represent indices
// into the compact arc array. Type S represents the data storage.
// (Template arg defaults declared in fst-decl.h.)
template <class A, class C, class U /* = uint32 */,
          class S /* = DefaultCompactStore<typename C::Element, U> */>
class CompactFst : public ImplToExpandedFst<CompactFstImpl<A, C, U, S>> {
 public:
  friend class StateIterator<CompactFst<A, C, U, S>>;
  friend class ArcIterator<CompactFst<A, C, U, S>>;
  template <class F, class G>
  void friend Cast(const F &, G *);

  typedef A Arc;
  typedef typename A::StateId StateId;
  typedef CompactFstImpl<A, C, U, S> Impl;
  typedef DefaultCacheStore<A> Store;
  typedef typename Store::State State;
  typedef U Unsigned;

  CompactFst() : ImplToExpandedFst<Impl>(std::make_shared<Impl>()) {}

  // If data is not nullptr, it is assumed to be already initialized.
  explicit CompactFst(const Fst<A> &fst, const C &compactor = C(),
                      const CompactFstOptions &opts = CompactFstOptions(),
                      std::shared_ptr<S> data = std::shared_ptr<S>())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(
                fst, std::make_shared<C>(compactor), opts, data)) {}

  // If data is not nullptr, it is assumed to be already initialized.
  CompactFst(const Fst<A> &fst, std::shared_ptr<C> compactor,
             const CompactFstOptions &opts = CompactFstOptions(),
             std::shared_ptr<S> data = std::shared_ptr<S>())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(fst, compactor, opts, data)) {}

  // The following 2 constructors take as input two iterators delimiting
  // a set of (already) compacted transitions, starting with the
  // transitions out of the initial state. The format of the input
  // differs for fixed out-degree and variable out-degree compactors.
  //
  // - For fixed out-degree compactors, the final weight (encoded as a
  // compacted transition) needs to be given only for final
  // states. All strings (compactor of size 1) will be assume to be
  // terminated by a final state even when the final state is not
  // implicitely given.
  //
  // - For variable out-degree compactors, the final weight (encoded
  // as a compacted transition) needs to be given for all states and
  // must appeared first in the list (for state s, final weight of s,
  // followed by outgoing transitons in s).
  //
  // These 2 constructors allows the direct construction of a CompactFst
  // without first creating a more memory hungry 'regular' FST. This
  // is useful when memory usage is severely constrained.
  template <class Iterator>
  explicit CompactFst(const Iterator &begin, const Iterator &end,
                      const C &compactor = C(),
                      const CompactFstOptions &opts = CompactFstOptions())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(
                begin, end, std::make_shared<C>(compactor), opts)) {}

  template <class Iterator>
  CompactFst(const Iterator &begin, const Iterator &end,
             std::shared_ptr<C> compactor,
             const CompactFstOptions &opts = CompactFstOptions())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(begin, end, compactor, opts)) {}

  // See Fst<>::Copy() for doc.
  CompactFst(const CompactFst<A, C, U, S> &fst, bool safe = false)
      : ImplToExpandedFst<Impl>(fst, safe) {}

  // Get a copy of this CompactFst. See Fst<>::Copy() for further doc.
  CompactFst<A, C, U, S> *Copy(bool safe = false) const override {
    return new CompactFst<A, C, U, S>(*this, safe);
  }

  // Read a CompactFst from an input stream; return nullptr on error
  static CompactFst<A, C, U, S> *Read(std::istream &strm,
                                      const FstReadOptions &opts) {
    Impl *impl = Impl::Read(strm, opts);
    return impl ? new CompactFst<A, C, U, S>(std::shared_ptr<Impl>(impl))
                : nullptr;
  }

  // Read a CompactFst from a file; return nullptr on error
  // Empty filename reads from standard input
  static CompactFst<A, C, U, S> *Read(const string &filename) {
    Impl *impl = ImplToExpandedFst<Impl>::Read(filename);
    return impl ? new CompactFst<A, C, U, S>(std::shared_ptr<Impl>(impl))
                : nullptr;
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const override {
    return GetImpl()->Write(strm, opts);
  }

  bool Write(const string &filename) const override {
    return Fst<A>::WriteFile(filename);
  }

  template <class F>
  static bool WriteFst(const F &fst, const C &compactor, std::ostream &strm,
                       const FstWriteOptions &opts);

  void InitStateIterator(StateIteratorData<A> *data) const override {
    GetImpl()->InitStateIterator(data);
  }

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

  MatcherBase<A> *InitMatcher(MatchType match_type) const override {
    return new SortedMatcher<CompactFst<A, C, U, S>>(*this, match_type);
  }

  template <class Iterator>
  void SetCompactElements(const Iterator &b, const Iterator &e) {
    GetMutableImpl()->SetCompactElements(b, e);
  }

 private:
  using ImplToFst<Impl, ExpandedFst<A>>::GetImpl;
  using ImplToFst<Impl, ExpandedFst<A>>::GetMutableImpl;

  explicit CompactFst(std::shared_ptr<Impl> impl)
      : ImplToExpandedFst<Impl>(impl) {}

  // Use overloading to extract the type of the argument.
  static Impl *GetImplIfCompactFst(const CompactFst<A, C, U, S> &compact_fst) {
    return compact_fst.GetImpl();
  }

  // This does not give privileged treatment to subclasses of CompactFst.
  template <typename NonCompactFst>
  static Impl *GetImplIfCompactFst(const NonCompactFst &fst) {
    return nullptr;
  }

  void operator=(const CompactFst<A, C, U, S> &fst);  // disallow
};

// Writes Fst in Compact format, potentially with a pass over the machine
// before writing to compute the number of states and arcs.
//
template <class A, class C, class U, class S>
template <class F>
bool CompactFst<A, C, U, S>::WriteFst(const F &fst, const C &compactor,
                                      std::ostream &strm,
                                      const FstWriteOptions &opts) {
  typedef U Unsigned;
  typedef typename C::Element CompactElement;
  typedef typename A::Weight Weight;
  int file_version =
      opts.align ? Impl::kAlignedFileVersion : Impl::kFileVersion;
  size_t num_arcs = -1, num_states = -1;
  C first_pass_compactor = compactor;
  if (Impl *impl = GetImplIfCompactFst(fst)) {
    num_arcs = impl->Data()->NumArcs();
    num_states = impl->Data()->NumStates();
    first_pass_compactor = *impl->GetCompactor();
  } else {
    // A first pass is needed to compute the state of the compactor, which
    // is saved ahead of the rest of the data structures.  This unfortunately
    // means forcing a complete double compaction when writing in this format.
    // TODO(allauzen): eliminate mutable state from compactors.
    num_arcs = 0;
    num_states = 0;
    for (StateIterator<F> siter(fst); !siter.Done(); siter.Next()) {
      const StateId s = siter.Value();
      ++num_states;
      if (fst.Final(s) != Weight::Zero()) {
        first_pass_compactor.Compact(
            s, A(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
      }
      for (ArcIterator<F> aiter(fst, s); !aiter.Done(); aiter.Next()) {
        ++num_arcs;
        first_pass_compactor.Compact(s, aiter.Value());
      }
    }
  }
  FstHeader hdr;
  hdr.SetStart(fst.Start());
  hdr.SetNumStates(num_states);
  hdr.SetNumArcs(num_arcs);
  string type = "compact";
  if (sizeof(U) != sizeof(uint32)) {
    string size;
    Int64ToStr(8 * sizeof(U), &size);
    type += size;
  }
  type += "_";
  type += C::Type();
  if (S::Type() != "compact") {
    type += "_";
    type += S::Type();
  }
  uint64 copy_properties = fst.Properties(kCopyProperties, true);
  if ((copy_properties & kError) || !compactor.Compatible(fst)) {
    FSTERROR() << "Fst incompatible with compactor";
    return false;
  }
  uint64 properties = copy_properties | Impl::kStaticProperties;
  FstImpl<A>::WriteFstHeader(fst, strm, opts, file_version, type, properties,
                             &hdr);
  first_pass_compactor.Write(strm);
  if (first_pass_compactor.Size() == -1) {
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "CompactFst::Write: Alignment failed: " << opts.source;
      return false;
    }
    Unsigned compacts = 0;
    for (StateIterator<F> siter(fst); !siter.Done(); siter.Next()) {
      const StateId s = siter.Value();
      strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
      if (fst.Final(s) != Weight::Zero()) {
        ++compacts;
      }
      compacts += fst.NumArcs(s);
    }
    strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
  }
  if (opts.align && !AlignOutput(strm)) {
    LOG(ERROR) << "Could not align file during write after writing states";
  }
  C second_pass_compactor = compactor;
  CompactElement element;
  for (StateIterator<F> siter(fst); !siter.Done(); siter.Next()) {
    const StateId s = siter.Value();
    if (fst.Final(s) != Weight::Zero()) {
      element = second_pass_compactor.Compact(
          s, A(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
      strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
    }
    for (ArcIterator<F> aiter(fst, s); !aiter.Done(); aiter.Next()) {
      element = second_pass_compactor.Compact(s, aiter.Value());
      strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
    }
  }
  strm.flush();
  if (!strm) {
    LOG(ERROR) << "CompactFst write failed: " << opts.source;
    return false;
  }
  return true;
}

// Specialization for CompactFst; see generic version in fst.h
// for sample usage (but use the CompactFst type!). This version
// should inline.
template <class A, class C, class U>
class StateIterator<CompactFst<A, C, U>> {
 public:
  typedef typename A::StateId StateId;

  explicit StateIterator(const CompactFst<A, C, U> &fst)
      : nstates_(fst.GetImpl()->NumStates()), s_(0) {}

  bool Done() const { return s_ >= nstates_; }

  StateId Value() const { return s_; }

  void Next() { ++s_; }

  void Reset() { s_ = 0; }

 private:
  StateId nstates_;
  StateId s_;

  DISALLOW_COPY_AND_ASSIGN(StateIterator);
};

// Specialization for CompactFst.
// Never caches, always iterates over the underlying compact elements.
template <class A, class C, class U>
class ArcIterator<CompactFst<A, C, U>> {
 public:
  typedef typename A::StateId StateId;
  typedef typename C::Element CompactElement;

  ArcIterator(const CompactFst<A, C, U> &fst, StateId s)
      : compactor_(fst.GetImpl()->GetCompactor()),
        state_(s),
        compacts_(0),
        pos_(0),
        flags_(kArcValueFlags) {
    const DefaultCompactStore<CompactElement, U> *data = fst.GetImpl()->Data();
    size_t offset;
    if (compactor_->Size() == -1) {  // Variable out-degree compactor
      offset = data->States(s);
      num_arcs_ = data->States(s + 1) - offset;
    } else {  // Fixed out-degree compactor
      offset = s * compactor_->Size();
      num_arcs_ = compactor_->Size();
    }
    if (num_arcs_ > 0) {
      compacts_ = &(data->Compacts(offset));
      arc_ = compactor_->Expand(s, *compacts_, kArcILabelValue);
      if (arc_.ilabel == kNoStateId) {
        ++compacts_;
        --num_arcs_;
      }
    }
  }

  ~ArcIterator() {}

  bool Done() const { return pos_ >= num_arcs_; }

  const A &Value() const {
    arc_ = compactor_->Expand(state_, compacts_[pos_], flags_);
    return arc_;
  }

  void Next() { ++pos_; }

  size_t Position() const { return pos_; }

  void Reset() { pos_ = 0; }

  void Seek(size_t pos) { pos_ = pos; }

  uint32 Flags() const { return flags_; }

  void SetFlags(uint32 f, uint32 m) {
    flags_ &= ~m;
    flags_ |= (f & kArcValueFlags);
  }

 private:
  const C *compactor_;
  StateId state_;
  const CompactElement *compacts_;
  size_t pos_;
  size_t num_arcs_;
  mutable A arc_;
  uint32 flags_;

  DISALLOW_COPY_AND_ASSIGN(ArcIterator);
};

// // Specialization for CompactFst.
// // This is an optionally caching arc iterator.
// // TODO(allauzen): implements the kArcValueFlags, the current
// // implementation only implements the kArcNoCache flag.
// template <class A, class C, class U>
// class ArcIterator< CompactFst<A, C, U>> {
//  public:
//   typedef typename A::StateId StateId;

//   ArcIterator(const CompactFst<A, C, U> &fst, StateId s)
//       : fst_(fst), state_(s), pos_(0), num_arcs_(0), offset_(0),
//         flags_(kArcValueFlags) {
//     cache_data_.ref_count = 0;

//     if (fst_.GetImpl()->HasArcs(state_)) {
//       fst_.GetImpl()->InitArcIterator(s, &cache_data_);
//       num_arcs_ = cache_data_.narcs;
//       return;
//     }

//     const C *compactor = fst_.GetImpl()->GetCompactor();
//     const DefaultCompactStore<A, C, U> *data = fst_.GetImpl()->Data();
//     if (compactor->Size() == -1) {  // Variable out-degree compactor
//       offset_ = data->States(s);
//       num_arcs_ = data->States(s + 1) - offset_;
//     } else {  // Fixed out-degree compactor
//       offset_ =  s * compactor->Size();
//       num_arcs_ = compactor->Size();
//     }
//     if (num_arcs_ > 0) {
//       const A &arc = fst_.GetImpl()->ComputeArc(s, offset_);
//       if (arc.ilabel == kNoStateId) {
//         ++offset_;
//         --num_arcs_;
//       }
//     }
//   }

//   ~ArcIterator() {
//     if (cache_data_.ref_count)
//       --(*cache_data_.ref_count);
//   }

//   bool Done() const { return pos_ >= num_arcs_; }

//   const A& Value() const {
//     if (cache_data_.ref_count == 0) {
//       if (flags_ & kArcNoCache) {
//         arc_ = fst_.GetImpl()->ComputeArc(state_, pos_ + offset_);
//         return arc_;
//       } else {
//         fst_.GetImpl()->InitArcIterator(state_, &cache_data_);
//       }
//     }
//     return cache_data_.arcs[pos_];
//   }

//   void Next() { ++pos_; }

//   size_t Position() const { return pos_; }

//   void Reset() { pos_ = 0;  }

//   void Seek(size_t pos) { pos_ = pos; }

//   uint32 Flags() const { return flags_; }

//   void SetFlags(uint32 f, uint32 m) {
//     flags_ &= ~m;
//     flags_ |= f;

//     if (!(flags_ & kArcNoCache) && cache_data_.ref_count == 0)
//       fst_.GetImpl()->InitArcIterator(state_, &cache_data_);
//   }

//  private:
//   mutable const CompactFst<A, C, U> &fst_;
//   StateId state_;
//   size_t pos_;
//   size_t num_arcs_;
//   size_t offset_;
//   uint32 flags_;
//   mutable A arc_;
//   mutable ArcIteratorData<A> cache_data_;

//   DISALLOW_COPY_AND_ASSIGN(ArcIterator);
// };

//
// Utility Compactors
//

// Compactor for unweighted string FSTs
template <class A>
class StringCompactor {
 public:
  typedef A Arc;
  typedef typename A::Label Element;
  typedef typename A::Label Label;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;

  Element Compact(StateId s, const A &arc) const { return arc.ilabel; }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p, p, Weight::One(), p != kNoLabel ? s + 1 : kNoStateId);
  }

  ssize_t Size() const { return 1; }

  uint64 Properties() const { return kString | kAcceptor | kUnweighted; }

  bool Compatible(const Fst<A> &fst) const {
    uint64 props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string type = "string";
    return type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static StringCompactor *Read(std::istream &strm) {
    return new StringCompactor;
  }
};

// Compactor for weighted string FSTs
template <class A>
class WeightedStringCompactor {
 public:
  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  typedef std::pair<Label, Weight> Element;

  Element Compact(StateId s, const A &arc) const {
    return std::make_pair(arc.ilabel, arc.weight);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first, p.first, p.second,
               p.first != kNoLabel ? s + 1 : kNoStateId);
  }

  ssize_t Size() const { return 1; }

  uint64 Properties() const { return kString | kAcceptor; }

  bool Compatible(const Fst<A> &fst) const {
    uint64 props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string type = "weighted_string";
    return type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static WeightedStringCompactor *Read(std::istream &strm) {
    return new WeightedStringCompactor;
  }
};

// Compactor for unweighted acceptor FSTs
template <class A>
class UnweightedAcceptorCompactor {
 public:
  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  typedef std::pair<Label, StateId> Element;

  Element Compact(StateId s, const A &arc) const {
    return std::make_pair(arc.ilabel, arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first, p.first, Weight::One(), p.second);
  }

  ssize_t Size() const { return -1; }

  uint64 Properties() const { return kAcceptor | kUnweighted; }

  bool Compatible(const Fst<A> &fst) const {
    uint64 props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string type = "unweighted_acceptor";
    return type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static UnweightedAcceptorCompactor *Read(std::istream &istrm) {
    return new UnweightedAcceptorCompactor;
  }
};

// Compactor for weighted acceptor FSTs
template <class A>
class AcceptorCompactor {
 public:
  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  typedef std::pair<std::pair<Label, Weight>, StateId> Element;

  Element Compact(StateId s, const A &arc) const {
    return std::make_pair(std::make_pair(arc.ilabel, arc.weight),
                          arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first.first, p.first.first, p.first.second, p.second);
  }

  ssize_t Size() const { return -1; }

  uint64 Properties() const { return kAcceptor; }

  bool Compatible(const Fst<A> &fst) const {
    uint64 props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string type = "acceptor";
    return type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static AcceptorCompactor *Read(std::istream &strm) {
    return new AcceptorCompactor;
  }
};

// Compactor for unweighted FSTs
template <class A>
class UnweightedCompactor {
 public:
  typedef A Arc;
  typedef typename A::Label Label;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  typedef std::pair<std::pair<Label, Label>, StateId> Element;

  Element Compact(StateId s, const A &arc) const {
    return std::make_pair(std::make_pair(arc.ilabel, arc.olabel),
                          arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first.first, p.first.second, Weight::One(), p.second);
  }

  ssize_t Size() const { return -1; }

  uint64 Properties() const { return kUnweighted; }

  bool Compatible(const Fst<A> &fst) const {
    uint64 props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string type = "unweighted";
    return type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static UnweightedCompactor *Read(std::istream &strm) {
    return new UnweightedCompactor;
  }
};

// Useful aliases
template <class A, class U /* = uint32 */>
using CompactStringFst = CompactFst<A, StringCompactor<A>, U>;
template <class A, class U /* = uint32 */>
using CompactWeightedStringFst = CompactFst<A, WeightedStringCompactor<A>, U>;
template <class A, class U /* = uint32 */>
using CompactAcceptorFst = CompactFst<A, AcceptorCompactor<A>, U>;
template <class A, class U /* = uint32 */>
using CompactUnweightedFst = CompactFst<A, UnweightedCompactor<A>, U>;
template <class A, class U /* = uint32 */>
using CompactUnweightedAcceptorFst =
    CompactFst<A, UnweightedAcceptorCompactor<A>, U>;

using StdCompactStringFst = CompactStringFst<StdArc, uint32>;
using StdCompactWeightedStringFst = CompactWeightedStringFst<StdArc, uint32>;
using StdCompactAcceptorFst = CompactAcceptorFst<StdArc, uint32>;
using StdCompactUnweightedFst = CompactUnweightedFst<StdArc, uint32>;
using StdCompactUnweightedAcceptorFst =
    CompactUnweightedAcceptorFst<StdArc, uint32>;

}  // namespace fst

#endif  // FST_LIB_COMPACT_FST_H_