This file is indexed.

/usr/include/fst/determinize.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to determinize an FST.

#ifndef FST_LIB_DETERMINIZE_H_
#define FST_LIB_DETERMINIZE_H_

#include <algorithm>
#include <climits>
#include <forward_list>
#include <map>
#include <string>
#include <vector>

#include <fst/arc-map.h>
#include <fst/bi-table.h>
#include <fst/cache.h>
#include <fst/factor-weight.h>
#include <fst/filter-state.h>
#include <fst/prune.h>
#include <fst/test-properties.h>


namespace fst {

//
// COMMON DIVISORS - these are used in determinization to compute
// the transition weights. In the simplest case, it is just the same
// as the semiring Plus(). However, other choices permit more efficient
// determinization when the output contains strings.
//

// The default common divisor uses the semiring Plus.
template <class W>
class DefaultCommonDivisor {
 public:
  typedef W Weight;

  W operator()(const W &w1, const W &w2) const { return Plus(w1, w2); }
};

// The label common divisor for a (left) string semiring selects a
// single letter common prefix or the empty string. This is used in
// the determinization of output strings so that at most a single
// letter will appear in the output of a transtion.
template <typename L, StringType S>
class LabelCommonDivisor {
 public:
  typedef StringWeight<L, S> Weight;

  Weight operator()(const Weight &w1, const Weight &w2) const {
    StringWeightIterator<L, S> iter1(w1);
    StringWeightIterator<L, S> iter2(w2);

    if (!(StringWeight<L, S>::Properties() & kLeftSemiring)) {
      FSTERROR() << "LabelCommonDivisor: Weight needs to be left semiring";
      return Weight::NoWeight();
    } else if (w1.Size() == 0 || w2.Size() == 0) {
      return Weight::One();
    } else if (w1 == Weight::Zero()) {
      return Weight(iter2.Value());
    } else if (w2 == Weight::Zero()) {
      return Weight(iter1.Value());
    } else if (iter1.Value() == iter2.Value()) {
      return Weight(iter1.Value());
    } else {
      return Weight::One();
    }
  }
};

// The gallic common divisor uses the label common divisor on the
// string component and the template argument D common divisor on the
// weight component, which defaults to the default common divisor.
template <class L, class W, GallicType G, class D = DefaultCommonDivisor<W>>
class GallicCommonDivisor {
 public:
  typedef GallicWeight<L, W, G> Weight;

  Weight operator()(const Weight &w1, const Weight &w2) const {
    return Weight(label_common_divisor_(w1.Value1(), w2.Value1()),
                  weight_common_divisor_(w1.Value2(), w2.Value2()));
  }

 private:
  LabelCommonDivisor<L, GALLIC_STRING_TYPE(G)> label_common_divisor_;
  D weight_common_divisor_;
};

// Specialization for general GALLIC weight.
template <class L, class W, class D>
class GallicCommonDivisor<L, W, GALLIC, D> {
 public:
  typedef GallicWeight<L, W, GALLIC> Weight;
  typedef GallicWeight<L, W, GALLIC_RESTRICT> GRWeight;
  typedef UnionWeightIterator<GRWeight, GallicUnionWeightOptions<L, W>> Iter;

  Weight operator()(const Weight &w1, const Weight &w2) const {
    GRWeight w = GRWeight::Zero();
    for (Iter iter(w1); !iter.Done(); iter.Next())
      w = common_divisor_(w, iter.Value());
    for (Iter iter(w2); !iter.Done(); iter.Next())
      w = common_divisor_(w, iter.Value());
    return w == GRWeight::Zero() ? Weight::Zero() : Weight(w);
  }

 private:
  GallicCommonDivisor<L, W, GALLIC_RESTRICT, D> common_divisor_;
};

// Represents an element in a subset
template <class A>
struct DeterminizeElement {
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;

  DeterminizeElement() {}

  DeterminizeElement(StateId s, Weight w) : state_id(s), weight(w) {}

  bool operator==(const DeterminizeElement<A> &element) const {
    return state_id == element.state_id && weight == element.weight;
  }

  bool operator!=(const DeterminizeElement<A> &element) const {
    return !(*this == element);
  }

  bool operator<(const DeterminizeElement<A> &element) const {
    return state_id < element.state_id;
  }

  StateId state_id;  // Input state Id
  Weight weight;     // Residual weight
};

// Represents a weighted subset and determinization filter state
template <typename A, typename F>
struct DeterminizeStateTuple {
  typedef A Arc;
  typedef F FilterState;
  typedef DeterminizeElement<Arc> Element;
  typedef std::forward_list<Element> Subset;

  DeterminizeStateTuple() : filter_state(FilterState::NoState()) {}

  bool operator==(const DeterminizeStateTuple<A, F> &tuple) const {
    return (tuple.filter_state == filter_state) && (tuple.subset == subset);
  }

  bool operator!=(const DeterminizeStateTuple<A, F> &tuple) const {
    return (tuple.filter_state != filter_state) || (tuple.subset != subset);
  }

  Subset subset;
  FilterState filter_state;
};

// Proto-transition for determinization
template <class S>
struct DeterminizeArc {
  typedef S StateTuple;
  typedef typename S::Arc Arc;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  DeterminizeArc() : label(kNoLabel), weight(Weight::Zero()), dest_tuple(0) {}

  explicit DeterminizeArc(const Arc &arc)
      : label(arc.ilabel), weight(Weight::Zero()), dest_tuple(new S) {}

  Label label;             // arc label
  Weight weight;           // arc weight
  StateTuple *dest_tuple;  // destination subset and filter state
};

//
// DETERMINIZE FILTERS - these are used in determinization to compute
// destination state tuples based on the source tuple, transition, and
// destination element or on similar super-final transition
// information. The filter operates on a map between a label and the
// corresponding destination state tuples. It must define the map type
// LabelMap. The default filter is used for weighted determinization.
//

// A determinize filter for implementing weighted determinization.
template <class Arc>
class DefaultDeterminizeFilter {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;
  typedef CharFilterState FilterState;

  typedef DeterminizeElement<Arc> Element;
  typedef DeterminizeStateTuple<Arc, FilterState> StateTuple;
  typedef std::map<Label, DeterminizeArc<StateTuple>> LabelMap;

  // This is needed e.g. to go into the gallic domain for transducers.
  template <class A>
  struct rebind {
    typedef DefaultDeterminizeFilter<A> other;
  };

  DefaultDeterminizeFilter(const Fst<Arc> &fst) : fst_(fst.Copy()) {}

  // This is needed e.g. to go into the gallic domain for transducers.
  // Ownership of the templated filter argument is given to this class.
  template <class F>
  DefaultDeterminizeFilter(const Fst<Arc> &fst, F *filter) : fst_(fst.Copy()) {
    delete filter;
  }

  // Copy ctr. The FST can be passed if it has been e.g. (deep) copied.
  explicit DefaultDeterminizeFilter(const DefaultDeterminizeFilter<Arc> &filter,
                                    const Fst<Arc> *fst = 0)
      : fst_(fst ? fst->Copy() : filter.fst_->Copy()) {}

  ~DefaultDeterminizeFilter() { delete fst_; }

  FilterState Start() const { return FilterState(0); }

  void SetState(StateId s, const StateTuple &tuple) {}

  // Filters transition, possibly modifying label map. Returns
  // true if arc is added to label map.
  bool FilterArc(const Arc &arc, const Element &src_element,
                 const Element &dest_element, LabelMap *label_map) const {
    // Adds element to unique state tuple for arc label; create if necessary
    DeterminizeArc<StateTuple> &det_arc = (*label_map)[arc.ilabel];
    if (det_arc.label == kNoLabel) {
      det_arc = DeterminizeArc<StateTuple>(arc);
      det_arc.dest_tuple->filter_state = FilterState(0);
    }
    det_arc.dest_tuple->subset.push_front(dest_element);
    return true;
  }

  // Filters super-final transition, returning new final weight
  Weight FilterFinal(Weight final_weight, const Element &element) {
    return final_weight;
  }

  static uint64 Properties(uint64 props) { return props; }

 private:
  Fst<Arc> *fst_;
  void operator=(const DefaultDeterminizeFilter<Arc> &);  // disallow
};

//
// DETERMINIZATION STATE TABLES
//
// The determinization state table has the form:
//
// template <class A, class F>
// class DeterminizeStateTable {
//  public:
//   typename A Arc;
//   typename F FilterState;
//   typedef typename Arc::StateId StateId;
//   typedef DeterminizeStateTuple<Arc, FilterState> StateTuple;
//
//   // Required sub-class. This is needed e.g. to go into the gallic domain.
//   template <class B, class G>
//   struct rebind { typedef DeterminizeStateTable<B, G> other; };
//
//   // Required constuctor
//   DeterminizeStateTable();
//
//   // Required copy constructor that does not copy state
//   DeterminizeStateTable(const DeterminizeStateTable<A,F> &table);
//
//   // Lookup state ID by state tuple.
//   // If it doesn't exist, then add it. FindState takes ownership
//   // of the state tuple argument (so that it doesn't have to
//   // copy it if it creates a new state).
//   StateId FindState(StateTuple *tuple);
//
//   // Lookup state tuple by ID.
//   const StateTuple *Tuple(StateId id) const;
// };

// The default determinization state table based on the
// compact hash bi-table.
template <class A, class F>
class DefaultDeterminizeStateTable {
 public:
  typedef A Arc;
  typedef F FilterState;
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;
  typedef DeterminizeStateTuple<Arc, FilterState> StateTuple;
  typedef typename StateTuple::Subset Subset;
  typedef typename StateTuple::Element Element;

  template <class B, class G>
  struct rebind {
    typedef DefaultDeterminizeStateTable<B, G> other;
  };

  explicit DefaultDeterminizeStateTable(size_t table_size = 0)
      : table_size_(table_size), tuples_(table_size_) {}

  DefaultDeterminizeStateTable(const DefaultDeterminizeStateTable<A, F> &table)
      : table_size_(table.table_size_), tuples_(table_size_) {}

  ~DefaultDeterminizeStateTable() {
    for (StateId s = 0; s < tuples_.Size(); ++s) delete tuples_.FindEntry(s);
  }

  // Finds the state corresponding to a state tuple. Only creates a new
  // state if the tuple is not found. FindState takes ownership of
  // the tuple argument (so that it doesn't have to copy it if it
  // creates a new state).
  StateId FindState(StateTuple *tuple) {
    StateId ns = tuples_.Size();
    StateId s = tuples_.FindId(tuple);

    if (s != ns) delete tuple;  // tuple found
    return s;
  }

  const StateTuple *Tuple(StateId s) { return tuples_.FindEntry(s); }

 private:
  // Comparison object for StateTuples.
  class StateTupleEqual {
   public:
    bool operator()(const StateTuple *tuple1, const StateTuple *tuple2) const {
      return *tuple1 == *tuple2;
    }
  };

  // Hash function for StateTuples.
  class StateTupleKey {
   public:
    size_t operator()(const StateTuple *tuple) const {
      size_t h = tuple->filter_state.Hash();
      for (typename Subset::const_iterator iter = tuple->subset.begin();
           iter != tuple->subset.end(); ++iter) {
        const Element &element = *iter;
        size_t h1 = element.state_id;
        size_t h2 = element.weight.Hash();
        const int lshift = 5;
        const int rshift = CHAR_BIT * sizeof(size_t) - 5;
        h ^= h << 1 ^ h1 << lshift ^ h1 >> rshift ^ h2;
      }
      return h;
    }
  };

  size_t table_size_;

  typedef CompactHashBiTable<StateId, StateTuple *, StateTupleKey,
                             StateTupleEqual, HS_STL> StateTupleTable;

  StateTupleTable tuples_;

  void operator=(const DefaultDeterminizeStateTable<A, F> &);  // disallow
};

// Type of determinization
enum DeterminizeType {
  DETERMINIZE_FUNCTIONAL,     // Input transducer is functional (error if not)
  DETERMINIZE_NONFUNCTIONAL,  // Input transducer is not known to be functional
  DETERMINIZE_DISAMBIGUATE    // Input transducer is non-functional but only
  // keep the min of ambiguous outputs.
};

// Options for finite-state transducer determinization templated on
// the arc type, common divisor, the determinization filter and the
// state table.  DeterminizeFst takes ownership of the determinization
// filter and state table if provided.
template <class Arc, class D = DefaultCommonDivisor<typename Arc::Weight>,
          class F = DefaultDeterminizeFilter<Arc>,
          class T = DefaultDeterminizeStateTable<Arc, typename F::FilterState>>
struct DeterminizeFstOptions : CacheOptions {
  typedef typename Arc::Label Label;
  float delta;                // Quantization delta for subset weights
  Label subsequential_label;  // Label used for residual final output
                              // when producing subsequential transducers.
  DeterminizeType type;       // Determinization type
  bool increment_subsequential_label;  // When creating several subsequential
                                       // arcs at a given state, make their
                                       // label distinct by incrementing.
  F *filter;                           // Determinization filter
  T *state_table;                      // Determinization state table

  explicit DeterminizeFstOptions(const CacheOptions &opts, float del = kDelta,
                                 Label lab = 0,
                                 DeterminizeType typ = DETERMINIZE_FUNCTIONAL,
                                 bool inc_lab = false, F *filt = 0,
                                 T *table = 0)
      : CacheOptions(opts),
        delta(del),
        subsequential_label(lab),
        type(typ),
        increment_subsequential_label(inc_lab),
        filter(filt),
        state_table(table) {}

  explicit DeterminizeFstOptions(float del = kDelta, Label lab = 0,
                                 DeterminizeType typ = DETERMINIZE_FUNCTIONAL,
                                 bool inc_lab = false, F *filt = 0,
                                 T *table = 0)
      : delta(del),
        subsequential_label(lab),
        type(typ),
        increment_subsequential_label(inc_lab),
        filter(filt),
        state_table(table) {}
};

// Implementation of delayed DeterminizeFst. This base class is
// common to the variants that implement acceptor and transducer
// determinization.
template <class A>
class DeterminizeFstImplBase : public CacheImpl<A> {
 public:
  using FstImpl<A>::SetType;
  using FstImpl<A>::SetProperties;
  using FstImpl<A>::Properties;
  using FstImpl<A>::SetInputSymbols;
  using FstImpl<A>::SetOutputSymbols;

  using CacheBaseImpl<CacheState<A>>::HasStart;
  using CacheBaseImpl<CacheState<A>>::HasFinal;
  using CacheBaseImpl<CacheState<A>>::HasArcs;
  using CacheBaseImpl<CacheState<A>>::SetFinal;
  using CacheBaseImpl<CacheState<A>>::SetStart;

  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef DefaultCacheStore<A> Store;
  typedef typename Store::State State;

  template <class D, class F, class T>
  DeterminizeFstImplBase(const Fst<A> &fst,
                         const DeterminizeFstOptions<A, D, F, T> &opts)
      : CacheImpl<A>(opts), fst_(fst.Copy()) {
    SetType("determinize");
    uint64 iprops = fst.Properties(kFstProperties, false);
    uint64 dprops =
        DeterminizeProperties(iprops, opts.subsequential_label != 0,
                              opts.type == DETERMINIZE_NONFUNCTIONAL
                                  ? opts.increment_subsequential_label
                                  : true);
    SetProperties(F::Properties(dprops), kCopyProperties);
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
  }

  DeterminizeFstImplBase(const DeterminizeFstImplBase<A> &impl)
      : CacheImpl<A>(impl), fst_(impl.fst_->Copy(true)) {
    SetType("determinize");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  ~DeterminizeFstImplBase() override { delete fst_; }

  virtual DeterminizeFstImplBase<A> *Copy() const = 0;

  StateId Start() {
    if (!HasStart()) {
      StateId start = ComputeStart();
      if (start != kNoStateId) {
        SetStart(start);
      }
    }
    return CacheImpl<A>::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      Weight final = ComputeFinal(s);
      SetFinal(s, final);
    }
    return CacheImpl<A>::Final(s);
  }

  virtual void Expand(StateId s) = 0;

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<A>::NumOutputEpsilons(s);
  }

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<A>::InitArcIterator(s, data);
  }

  virtual StateId ComputeStart() = 0;

  virtual Weight ComputeFinal(StateId s) = 0;

  const Fst<A> &GetFst() const { return *fst_; }

 private:
  const Fst<A> *fst_;  // Input Fst

  void operator=(const DeterminizeFstImplBase<A> &);  // disallow
};

// Implementation of delayed determinization for weighted acceptors.
// It is templated on the arc type A and the common divisor D.
template <class A, class D, class F, class T>
class DeterminizeFsaImpl : public DeterminizeFstImplBase<A> {
 public:
  using FstImpl<A>::SetProperties;
  using DeterminizeFstImplBase<A>::GetFst;
  using DeterminizeFstImplBase<A>::SetArcs;

  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef typename F::FilterState FilterState;
  typedef DeterminizeStateTuple<A, FilterState> StateTuple;
  typedef typename StateTuple::Element Element;
  typedef typename StateTuple::Subset Subset;
  typedef typename F::LabelMap LabelMap;

  DeterminizeFsaImpl(const Fst<A> &fst, const std::vector<Weight> *in_dist,
                     std::vector<Weight> *out_dist,
                     const DeterminizeFstOptions<A, D, F, T> &opts)
      : DeterminizeFstImplBase<A>(fst, opts),
        delta_(opts.delta),
        in_dist_(in_dist),
        out_dist_(out_dist),
        filter_(opts.filter ? opts.filter : new F(fst)),
        state_table_(opts.state_table ? opts.state_table : new T()) {
    if (!fst.Properties(kAcceptor, true)) {
      FSTERROR() << "DeterminizeFst: Argument not an acceptor";
      SetProperties(kError, kError);
    }
    if (!(Weight::Properties() & kLeftSemiring)) {
      FSTERROR() << "DeterminizeFst: Weight needs to be left distributive: "
                 << Weight::Type();
      SetProperties(kError, kError);
    }
    if (out_dist_) out_dist_->clear();
  }

  DeterminizeFsaImpl(const DeterminizeFsaImpl<A, D, F, T> &impl)
      : DeterminizeFstImplBase<A>(impl),
        delta_(impl.delta_),
        in_dist_(0),
        out_dist_(0),
        filter_(new F(*impl.filter_, &GetFst())),
        state_table_(new T(*impl.state_table_)) {
    if (impl.out_dist_) {
      FSTERROR() << "DeterminizeFsaImpl: Cannot copy with out_dist vector";
      SetProperties(kError, kError);
    }
  }

  ~DeterminizeFsaImpl() override {
    delete filter_;
    delete state_table_;
  }

  DeterminizeFsaImpl<A, D, F, T> *Copy() const override {
    return new DeterminizeFsaImpl<A, D, F, T>(*this);
  }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Set error if found; return FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) && (GetFst().Properties(kError, false)))
      SetProperties(kError, kError);
    return FstImpl<A>::Properties(mask);
  }

  StateId ComputeStart() override {
    StateId s = GetFst().Start();
    if (s == kNoStateId) return kNoStateId;
    Element element(s, Weight::One());
    StateTuple *tuple = new StateTuple;
    tuple->subset.push_front(element);
    tuple->filter_state = filter_->Start();
    return FindState(tuple);
  }

  Weight ComputeFinal(StateId s) override {
    const StateTuple *tuple = state_table_->Tuple(s);
    filter_->SetState(s, *tuple);

    Weight final = Weight::Zero();
    for (typename Subset::const_iterator siter = tuple->subset.begin();
         siter != tuple->subset.end(); ++siter) {
      const Element &element = *siter;
      final =
          Plus(final, Times(element.weight, GetFst().Final(element.state_id)));
      final = filter_->FilterFinal(final, element);
      if (!final.Member()) SetProperties(kError, kError);
    }
    return final;
  }

  StateId FindState(StateTuple *tuple) {
    StateId s = state_table_->FindState(tuple);
    if (in_dist_ && out_dist_->size() <= s)
      out_dist_->push_back(ComputeDistance(tuple->subset));
    return s;
  }

  // Compute distance from a state to the final states in the DFA
  // given the distances in the NFA.
  Weight ComputeDistance(const Subset &subset) {
    Weight outd = Weight::Zero();
    for (typename Subset::const_iterator siter = subset.begin();
         siter != subset.end(); ++siter) {
      const Element &element = *siter;
      Weight ind = element.state_id < in_dist_->size()
                       ? (*in_dist_)[element.state_id]
                       : Weight::Zero();
      outd = Plus(outd, Times(element.weight, ind));
    }
    return outd;
  }

  // Computes the outgoing transitions from a state, creating new destination
  // states as needed.
  void Expand(StateId s) override {
    LabelMap label_map;
    GetLabelMap(s, &label_map);

    for (auto liter = label_map.begin(); liter != label_map.end(); ++liter) {
      AddArc(s, liter->second);
    }
    SetArcs(s);
  }

 private:
  // Constructs proto determinization transition, including
  // destination subset, per label.
  void GetLabelMap(StateId s, LabelMap *label_map) {
    const StateTuple *src_tuple = state_table_->Tuple(s);
    filter_->SetState(s, *src_tuple);
    for (typename Subset::const_iterator siter = src_tuple->subset.begin();
         siter != src_tuple->subset.end(); ++siter) {
      const Element &src_element = *siter;
      for (ArcIterator<Fst<A>> aiter(GetFst(), src_element.state_id);
           !aiter.Done(); aiter.Next()) {
        const A &arc = aiter.Value();
        Element dest_element(arc.nextstate,
                             Times(src_element.weight, arc.weight));
        filter_->FilterArc(arc, src_element, dest_element, label_map);
      }
    }

    for (auto liter = label_map->begin(); liter != label_map->end(); ++liter) {
      NormArc(&liter->second);
    }
  }

  // Sorts subsets and removes duplicate elements.
  // Normalizes transition and subset weights.
  void NormArc(DeterminizeArc<StateTuple> *det_arc) {
    StateTuple *dest_tuple = det_arc->dest_tuple;
    dest_tuple->subset.sort();
    auto piter = dest_tuple->subset.begin();
    for (auto diter = dest_tuple->subset.begin();
         diter != dest_tuple->subset.end();) {
      Element &dest_element = *diter;
      Element &prev_element = *piter;
      // Computes arc weight.
      det_arc->weight = common_divisor_(det_arc->weight, dest_element.weight);

      if (piter != diter && dest_element.state_id == prev_element.state_id) {
        // Found duplicate state: sums state weight and deletes dup.
        prev_element.weight = Plus(prev_element.weight, dest_element.weight);
        if (!prev_element.weight.Member()) SetProperties(kError, kError);
        ++diter;
        dest_tuple->subset.erase_after(piter);
      } else {
        piter = diter;
        ++diter;
      }
    }

    // Divides out label weight from destination subset elements.
    // Quantizes to ensure comparisons are effective.
    for (auto diter = dest_tuple->subset.begin();
         diter != dest_tuple->subset.end(); ++diter) {
      Element &dest_element = *diter;
      dest_element.weight =
          Divide(dest_element.weight, det_arc->weight, DIVIDE_LEFT);
      dest_element.weight = dest_element.weight.Quantize(delta_);
    }
  }

  // Adds an arc from state S to the destination state associated
  // with state tuple in DET_ARC (as created by GetLabelMap).
  void AddArc(StateId s, const DeterminizeArc<StateTuple> &det_arc) {
    A arc;
    arc.ilabel = det_arc.label;
    arc.olabel = det_arc.label;
    arc.weight = det_arc.weight;
    arc.nextstate = FindState(det_arc.dest_tuple);
    CacheImpl<A>::PushArc(s, arc);
  }

  float delta_;                    // Quantization delta for subset weights
  const std::vector<Weight> *in_dist_;  // Distance to final NFA states
  std::vector<Weight> *out_dist_;       // Distance to final DFA states

  D common_divisor_;
  F *filter_;
  T *state_table_;

  void operator=(const DeterminizeFsaImpl<A, D, F, T> &);  // disallow
};

// Implementation of delayed determinization for transducers.
// Transducer determinization is implemented by mapping the input to
// the Gallic semiring as an acceptor whose weights contain the output
// strings and using acceptor determinization above to determinize
// that acceptor.
template <class A, GallicType G, class D, class F, class T>
class DeterminizeFstImpl : public DeterminizeFstImplBase<A> {
 public:
  using FstImpl<A>::SetProperties;
  using DeterminizeFstImplBase<A>::GetFst;
  using CacheBaseImpl<CacheState<A>>::GetCacheGc;
  using CacheBaseImpl<CacheState<A>>::GetCacheLimit;

  typedef typename A::Label Label;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;

  typedef ToGallicMapper<A, G> ToMapper;
  typedef FromGallicMapper<A, G> FromMapper;

  typedef typename ToMapper::ToArc ToArc;
  typedef ArcMapFst<A, ToArc, ToMapper> ToFst;
  typedef ArcMapFst<ToArc, A, FromMapper> FromFst;

  typedef GallicCommonDivisor<Label, Weight, G, D> ToD;
  typedef typename F::template rebind<ToArc>::other ToF;
  typedef typename ToF::FilterState ToFilterState;
  typedef typename T::template rebind<ToArc, ToFilterState>::other ToT;
  typedef GallicFactor<Label, Weight, G> FactorIterator;

  DeterminizeFstImpl(const Fst<A> &fst,
                     const DeterminizeFstOptions<A, D, F, T> &opts)
      : DeterminizeFstImplBase<A>(fst, opts),
        delta_(opts.delta),
        subsequential_label_(opts.subsequential_label),
        increment_subsequential_label_(opts.increment_subsequential_label) {
    if (opts.state_table) {
      FSTERROR() << "DeterminizeFst: "
                 << "A state table can not be passed with transducer input";
      SetProperties(kError, kError);
      return;
    }
    Init(GetFst(), opts.filter);
  }

  DeterminizeFstImpl(const DeterminizeFstImpl<A, G, D, F, T> &impl)
      : DeterminizeFstImplBase<A>(impl),
        delta_(impl.delta_),
        subsequential_label_(impl.subsequential_label_),
        increment_subsequential_label_(impl.increment_subsequential_label_) {
    Init(GetFst(), 0);
  }

  ~DeterminizeFstImpl() override { delete from_fst_; }

  DeterminizeFstImpl<A, G, D, F, T> *Copy() const override {
    return new DeterminizeFstImpl<A, G, D, F, T>(*this);
  }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Set error if found; return FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) && (GetFst().Properties(kError, false) ||
                            from_fst_->Properties(kError, false)))
      SetProperties(kError, kError);
    return FstImpl<A>::Properties(mask);
  }

  StateId ComputeStart() override { return from_fst_->Start(); }

  Weight ComputeFinal(StateId s) override { return from_fst_->Final(s); }

  void Expand(StateId s) override {
    for (ArcIterator<FromFst> aiter(*from_fst_, s); !aiter.Done(); aiter.Next())
      CacheImpl<A>::PushArc(s, aiter.Value());
    CacheImpl<A>::SetArcs(s);
  }

 private:
  // Initialization of transducer determinization implementation, which
  // is defined after DeterminizeFst since it calls it.
  void Init(const Fst<A> &fst, F *filter);

  float delta_;
  Label subsequential_label_;
  bool increment_subsequential_label_;
  FromFst *from_fst_;

  void operator=(const DeterminizeFstImpl<A, G, D, F, T> &);  // disallow
};

// Determinizes a weighted transducer. This version is a delayed
// Fst. The result will be an equivalent FST that has the property
// that no state has two transitions with the same input label.
// For this algorithm, epsilon transitions are treated as regular
// symbols (cf. RmEpsilon).
//
// The transducer must be functional. The weights must be (weakly)
// left divisible (valid for TropicalWeight and LogWeight for instance)
// and be zero-sum-free if for all a,b: (Plus(a, b) = 0 => a = b = 0.
//
// Complexity:
// - Determinizable: exponential (polynomial in the size of the output)
// - Non-determinizable) does not terminate
//
// The determinizable automata include all unweighted and all acyclic input.
//
// References:
// - Mehryar Mohri, "Finite-State Transducers in Language and Speech
//   Processing". Computational Linguistics, 23:2, 1997.
//
// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A>
class DeterminizeFst : public ImplToFst<DeterminizeFstImplBase<A>> {
 public:
  friend class ArcIterator<DeterminizeFst<A>>;
  friend class StateIterator<DeterminizeFst<A>>;
  template <class B, GallicType G, class D, class F, class T>
  friend class DeterminizeFstImpl;

  typedef A Arc;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;
  typedef typename A::Label Label;
  typedef DefaultCacheStore<A> Store;
  typedef typename Store::State State;
  typedef DeterminizeFstImplBase<A> Impl;

  explicit DeterminizeFst(const Fst<A> &fst)
      : ImplToFst<Impl>(CreateImpl(fst)) {}

  template <class D, class F, class T>
  DeterminizeFst(const Fst<A> &fst,
                 const DeterminizeFstOptions<A, D, F, T> &opts)
      : ImplToFst<Impl>(CreateImpl(fst, opts)) {}

  // This acceptor-only version additionally computes the distance to
  // final states in the output if provided with those distances for the
  // input. Useful for e.g. unique N-shortest paths.
  template <class D, class F, class T>
  DeterminizeFst(const Fst<A> &fst, const std::vector<Weight> *in_dist,
                 std::vector<Weight> *out_dist,
                 const DeterminizeFstOptions<A, D, F, T> &opts)
      : ImplToFst<Impl>(std::make_shared<DeterminizeFsaImpl<A, D, F, T>>(
            fst, in_dist, out_dist, opts)) {
    if (!fst.Properties(kAcceptor, true)) {
      FSTERROR() << "DeterminizeFst: "
                 << "Distance to final states computed for acceptors only";
      GetMutableImpl()->SetProperties(kError, kError);
    }
  }

  // See Fst<>::Copy() for doc.
  DeterminizeFst(const DeterminizeFst<A> &fst, bool safe = false)
      : ImplToFst<Impl>(safe ? std::shared_ptr<Impl>(fst.GetImpl()->Copy())
                             : fst.GetSharedImpl()) {}

  // Get a copy of this DeterminizeFst. See Fst<>::Copy() for further doc.
  DeterminizeFst<A> *Copy(bool safe = false) const override {
    return new DeterminizeFst<A>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<A> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<A> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  static std::shared_ptr<Impl> CreateImpl(const Fst<Arc> &fst) {
    typedef DefaultCommonDivisor<Weight> D;
    typedef DefaultDeterminizeFilter<A> F;
    typedef typename F::FilterState FilterState;
    typedef DefaultDeterminizeStateTable<A, FilterState> T;
    DeterminizeFstOptions<A, D, F, T> opts;
    return CreateImpl(fst, opts);
  }

  template <class D, class F, class T>
  static std::shared_ptr<Impl> CreateImpl(
      const Fst<Arc> &fst, const DeterminizeFstOptions<A, D, F, T> &opts) {
    if (fst.Properties(kAcceptor, true)) {
      // Calls implementation for acceptors.
      return std::make_shared<DeterminizeFsaImpl<A, D, F, T>>(fst, nullptr,
                                                              nullptr, opts);
    } else if (opts.type == DETERMINIZE_DISAMBIGUATE) {
      std::shared_ptr<Impl> rv =
          std::make_shared<DeterminizeFstImpl<A, GALLIC_MIN, D, F, T>>(fst,
                                                                       opts);
      if (!(Weight::Properties() & kPath)) {
        FSTERROR() << "DeterminizeFst: Weight needs to have the "
                   << "path property to disambiguate output: "
                   << Weight::Type();
        rv->SetProperties(kError, kError);
      }
      // Calls disambiguating implementation for non-functional transducers.
      return rv;
    } else if (opts.type == DETERMINIZE_FUNCTIONAL) {
      // Calls implementation for functional transducers.
      return std::make_shared<DeterminizeFstImpl<A, GALLIC_RESTRICT, D, F, T>>(
          fst, opts);
    } else {  // opts.type == DETERMINIZE_NONFUNCTIONAL
      // Calls implementation for non functional transducers;
      return std::make_shared<DeterminizeFstImpl<A, GALLIC, D, F, T>>(fst,
                                                                      opts);
    }
  }

  void operator=(const DeterminizeFst<A> &fst);  // Disallow
};

// Initialization of transducer determinization implementation, which
// is defined after DeterminizeFst since it calls it.
template <class A, GallicType G, class D, class F, class T>
void DeterminizeFstImpl<A, G, D, F, T>::Init(const Fst<A> &fst, F *filter) {
  // Mapper to an acceptor.
  ToFst to_fst(fst, ToMapper());
  ToF *to_filter = filter ? new ToF(to_fst, filter) : 0;

  // Determinizes acceptor.
  // This recursive call terminates since it is to a (non-recursive)
  // different constructor.
  CacheOptions copts(GetCacheGc(), GetCacheLimit());
  DeterminizeFstOptions<ToArc, ToD, ToF, ToT> dopts(
      copts, delta_, 0, DETERMINIZE_FUNCTIONAL, false, to_filter);
  // Uses acceptor-only constructor to avoid template recursion
  DeterminizeFst<ToArc> det_fsa(to_fst, 0, 0, dopts);

  // Mapper back to transducer.
  FactorWeightOptions<ToArc> fopts(
      CacheOptions(true, 0), delta_, kFactorFinalWeights, subsequential_label_,
      subsequential_label_, increment_subsequential_label_,
      increment_subsequential_label_);
  FactorWeightFst<ToArc, FactorIterator> factored_fst(det_fsa, fopts);
  from_fst_ = new FromFst(factored_fst, FromMapper(subsequential_label_));
}

// Specialization for DeterminizeFst.
template <class A>
class StateIterator<DeterminizeFst<A>>
    : public CacheStateIterator<DeterminizeFst<A>> {
 public:
  explicit StateIterator(const DeterminizeFst<A> &fst)
      : CacheStateIterator<DeterminizeFst<A>>(fst, fst.GetMutableImpl()) {}
};

// Specialization for DeterminizeFst.
template <class A>
class ArcIterator<DeterminizeFst<A>>
    : public CacheArcIterator<DeterminizeFst<A>> {
 public:
  typedef typename A::StateId StateId;

  ArcIterator(const DeterminizeFst<A> &fst, StateId s)
      : CacheArcIterator<DeterminizeFst<A>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(ArcIterator);
};

template <class A>
inline void DeterminizeFst<A>::InitStateIterator(
    StateIteratorData<A> *data) const {
  data->base = new StateIterator<DeterminizeFst<A>>(*this);
}

// Useful aliases when using StdArc.
typedef DeterminizeFst<StdArc> StdDeterminizeFst;

template <class Arc>
struct DeterminizeOptions {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  typedef typename Arc::Label Label;

  float delta;                // Quantization delta for subset weights.
  Weight weight_threshold;    // Pruning weight threshold.
  StateId state_threshold;    // Pruning state threshold.
  Label subsequential_label;  // Label used for residual final output
  // when producing subsequential transducers.
  DeterminizeType type;  // functional, nonfunctional, disambiguate?
  bool increment_subsequential_label;  // When creating several subsequential
  // arcs at a given state, make their label distinct by incrementing.

  explicit DeterminizeOptions(float d = kDelta, Weight w = Weight::Zero(),
                              StateId n = kNoStateId, Label l = 0,
                              DeterminizeType t = DETERMINIZE_FUNCTIONAL,
                              bool isl = false)
      : delta(d),
        weight_threshold(w),
        state_threshold(n),
        subsequential_label(l),
        type(t),
        increment_subsequential_label(isl) {}
};

// Determinizes a weighted transducer.  This version writes the
// determinized Fst to an output MutableFst.  The result will be an
// equivalent FST that has the property that no state has two
// transitions with the same input label.  For this algorithm, epsilon
// transitions are treated as regular symbols (cf. RmEpsilon).
//
// The transducer must be functional. The weights must be (weakly)
// left divisible (valid for TropicalWeight and LogWeight).
//
// Complexity:
// - Determinizable: exponential (polynomial in the size of the output)
// - Non-determinizable: does not terminate
//
// The determinizable automata include all unweighted and all acyclic input.
//
// References:
// - Mehryar Mohri, "Finite-State Transducers in Language and Speech
//   Processing". Computational Linguistics, 23:2, 1997.
template <class Arc>
void Determinize(
    const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
    const DeterminizeOptions<Arc> &opts = DeterminizeOptions<Arc>()) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;

  DeterminizeFstOptions<Arc> nopts;
  nopts.delta = opts.delta;
  nopts.subsequential_label = opts.subsequential_label;
  nopts.type = opts.type;
  nopts.increment_subsequential_label = opts.increment_subsequential_label;

  nopts.gc_limit = 0;  // Cache only the last state for fastest copy.

  if (opts.weight_threshold != Weight::Zero() ||
      opts.state_threshold != kNoStateId) {
    if (ifst.Properties(kAcceptor, false)) {
      std::vector<Weight> idistance, odistance;
      ShortestDistance(ifst, &idistance, true);
      DeterminizeFst<Arc> dfst(ifst, &idistance, &odistance, nopts);
      PruneOptions<Arc, AnyArcFilter<Arc>> popts(
          opts.weight_threshold, opts.state_threshold, AnyArcFilter<Arc>(),
          &odistance);
      Prune(dfst, ofst, popts);
    } else {
      *ofst = DeterminizeFst<Arc>(ifst, nopts);
      Prune(ofst, opts.weight_threshold, opts.state_threshold);
    }
  } else {
    *ofst = DeterminizeFst<Arc>(ifst, nopts);
  }
}

}  // namespace fst

#endif  // FST_LIB_DETERMINIZE_H_