This file is indexed.

/usr/include/fst/disambiguate.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to disambiguate an FST.

#ifndef FST_LIB_DISAMBIGUATE_H_
#define FST_LIB_DISAMBIGUATE_H_

#include <algorithm>
#include <climits>
#include <map>
#include <set>
#include <string>
#include <vector>

#include <fst/arcsort.h>
#include <fst/compose.h>
#include <fst/connect.h>
#include <fst/determinize.h>
#include <fst/dfs-visit.h>
#include <fst/project.h>
#include <fst/prune.h>
#include <fst/state-map.h>
#include <fst/state-table.h>
#include <fst/union-find.h>
#include <fst/verify.h>


namespace fst {

template <class Arc>
struct DisambiguateOptions : public DeterminizeOptions<Arc> {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  typedef typename Arc::Label Label;

  explicit DisambiguateOptions(float d = kDelta, Weight w = Weight::Zero(),
                               StateId n = kNoStateId, Label l = 0)
      : DeterminizeOptions<Arc>(d, w, n, l, DETERMINIZE_FUNCTIONAL) {}
};

// A determinize filter based on a subset element relation.
// The relation is assumed to be reflexive and symmetric.
template <class Arc, class R>
class RelationDeterminizeFilter {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  typedef IntegerFilterState<StateId> FilterState;
  typedef DeterminizeStateTuple<Arc, FilterState> StateTuple;
  typedef typename StateTuple::Subset Subset;
  typedef typename StateTuple::Element Element;
  typedef std::multimap<Label, DeterminizeArc<StateTuple>> LabelMap;

  // This is needed e.g. to go into the gallic domain for transducers.
  // No need to rebind the relation since its use here only depends
  // on the state Ids.
  template <class A>
  struct rebind {
    typedef RelationDeterminizeFilter<A, R> other;
  };

  RelationDeterminizeFilter(const Fst<Arc> &fst)
      : fst_(fst.Copy()), r_(new R()), s_(kNoStateId), head_(0) {}

  // Ownership of the relation is given to this class.
  RelationDeterminizeFilter(const Fst<Arc> &fst, R *r)
      : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(0) {}

  // Ownership of the relation is given to this class. Returns head states.
  RelationDeterminizeFilter(const Fst<Arc> &fst, R *r,
                            std::vector<StateId> *head)
      : fst_(fst.Copy()), r_(r), s_(kNoStateId), head_(head) {}

  // This is needed e.g. to go into the gallic domain for transducers.
  // Ownership of the templated filter argument is given to this class.
  template <class F>
  RelationDeterminizeFilter(const Fst<Arc> &fst, F *filter)
      : fst_(fst.Copy()),
        r_(new R(filter->GetRelation())),
        s_(kNoStateId),
        head_(filter->GetHeadStates()) {
    delete filter;
  }

  // Copy ctr. The FST can be passed if it has been e.g. (deep) copied.
  explicit RelationDeterminizeFilter(
      const RelationDeterminizeFilter<Arc, R> &filter, const Fst<Arc> *fst = 0)
      : fst_(fst ? fst->Copy() : filter.fst_->Copy()),
        r_(new R(*filter.r_)),
        s_(kNoStateId),
        head_() {}

  ~RelationDeterminizeFilter() {
    delete fst_;
    delete r_;
  }

  FilterState Start() const { return FilterState(fst_->Start()); }

  void SetState(StateId s, const StateTuple &tuple) {
    if (s_ != s) {
      s_ = s;
      tuple_ = &tuple;
      StateId head = tuple.filter_state.GetState();
      is_final_ = fst_->Final(head) != Weight::Zero();
      if (head_) {
        if (head_->size() <= s) head_->resize(s + 1, kNoStateId);
        (*head_)[s] = head;
      }
    }
  }

  // Filters transition, possibly modifying label map. Returns
  // true if arc is added to label map.
  bool FilterArc(const Arc &arc, const Element &src_element,
                 const Element &dest_element, LabelMap *label_map) const;

  // Filters super-final transition, returning new final weight
  Weight FilterFinal(const Weight final_weight, const Element &element) const {
    return is_final_ ? final_weight : Weight::Zero();
  }

  static uint64 Properties(uint64 props) {
    return props & ~(kIDeterministic | kODeterministic);
  }

  const R &GetRelation() { return *r_; }
  std::vector<StateId> *GetHeadStates() { return head_; }

 private:
  // Pairs arc labels with state tuples with possible heads and
  // empty subsets.
  void InitLabelMap(LabelMap *label_map) const;

  Fst<Arc> *fst_;  // Input FST
  R *r_;           // Relation compatible with the inverse trans. function
  StateId s_;      // Current state
  const StateTuple *tuple_;  // Current tuple
  bool is_final_;            // Is the current head state final?
  std::vector<StateId> *head_;  // Head state for a given state.

  void operator=(const RelationDeterminizeFilter<Arc, R> &filt);  // disallow
};

template <class Arc, class R>
bool RelationDeterminizeFilter<Arc, R>::FilterArc(const Arc &arc,
                                                  const Element &src_element,
                                                  const Element &dest_element,
                                                  LabelMap *label_map) const {
  bool added = false;
  if (label_map->empty()) InitLabelMap(label_map);

  // Adds element to state tuple if element state is related to tuple head.
  for (auto liter = label_map->lower_bound(arc.ilabel);
       liter != label_map->end() && liter->first == arc.ilabel; ++liter) {
    StateTuple *dest_tuple = liter->second.dest_tuple;
    StateId dest_head = dest_tuple->filter_state.GetState();
    if ((*r_)(dest_element.state_id, dest_head)) {
      dest_tuple->subset.push_front(dest_element);
      added = true;
    }
  }
  return added;
}

template <class Arc, class R>
void RelationDeterminizeFilter<Arc, R>::InitLabelMap(
    LabelMap *label_map) const {
  StateId src_head = tuple_->filter_state.GetState();
  Label label = kNoLabel;
  StateId nextstate = kNoStateId;
  for (ArcIterator<Fst<Arc>> aiter(*fst_, src_head); !aiter.Done();
       aiter.Next()) {
    const Arc &arc = aiter.Value();
    if (arc.ilabel == label && arc.nextstate == nextstate)
      continue;  // multiarc
    DeterminizeArc<StateTuple> det_arc(arc);
    det_arc.dest_tuple->filter_state = FilterState(arc.nextstate);
    std::pair<Label, DeterminizeArc<StateTuple>> pr(arc.ilabel, det_arc);
    label_map->insert(pr);
    label = arc.ilabel;
    nextstate = arc.nextstate;
  }
}

// Helper class to disambiguate an FST via Disambiguate().
template <class Arc>
class Disambiguator {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  typedef typename Arc::Label Label;
  // Ids arc with state id and arc position. Arc pos of -1 means
  // final (super-final transition).
  typedef std::pair<StateId, ssize_t> ArcId;

  Disambiguator() : candidates_(0), merge_(0), error_(false) {}

  void Disambiguate(
      const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
      const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
    VectorFst<Arc> sfst(ifst);
    Connect(&sfst);
    ArcSort(&sfst, ArcCompare());
    PreDisambiguate(sfst, ofst, opts);
    ArcSort(ofst, ArcCompare());
    FindAmbiguities(*ofst);
    RemoveSplits(ofst);
    MarkAmbiguities();
    RemoveAmbiguities(ofst);
    if (error_) ofst->SetProperties(kError, kError);
  }

 private:
  // Compare class for comparing input labels and next states of arcs.
  // This sort order facilitates the predisambiguation.
  class ArcCompare {
   public:
    bool operator()(Arc arc1, Arc arc2) const {
      return arc1.ilabel < arc2.ilabel ||
             (arc1.ilabel == arc2.ilabel && arc1.nextstate < arc2.nextstate);
    }

    uint64 Properties(uint64 props) const {
      return (props & kArcSortProperties) | kILabelSorted |
             (props & kAcceptor ? kOLabelSorted : 0);
    }
  };

  // Compare class for comparing transitions represented by their arc ID.
  // This sort order facilitates ambiguity detection.
  class ArcIdCompare {
   public:
    explicit ArcIdCompare(const std::vector<StateId> &head) : head_(head) {}

    bool operator()(const ArcId &a1, const ArcId &a2) const {
      StateId src1 = a1.first;
      StateId src2 = a2.first;
      StateId pos1 = a1.second;
      StateId pos2 = a2.second;
      StateId head1 = head_[src1];
      StateId head2 = head_[src2];

      // Sort first by src head state
      if (head1 < head2) return true;
      if (head2 < head1) return false;

      // ... then by src state
      if (src1 < src2) return true;
      if (src2 < src1) return false;

      // ... then by position
      return pos1 < pos2;
    }

   private:
    const std::vector<StateId> &head_;
  };

  // A relation that determines if two states share a common future.
  class CommonFuture {
   public:
    typedef GenericComposeStateTable<Arc, TrivialFilterState> T;
    typedef typename T::StateTuple StateTuple;

    // Needed for compilation with DeterminizeRelationFilter
    CommonFuture() {
      FSTERROR() << "Disambiguate::CommonFuture: Fst not provided";
    }

    explicit CommonFuture(const Fst<Arc> &ifst) {
      typedef Matcher<Fst<Arc>> M;
      ComposeFstOptions<Arc, M, NullComposeFilter<M>> opts;

      // Ensures composition is between acceptors.
      bool trans = ifst.Properties(kNotAcceptor, true);
      const Fst<Arc> *fsa =
          trans ? new ProjectFst<Arc>(ifst, PROJECT_INPUT) : &ifst;

      opts.state_table = new T(*fsa, *fsa);
      ComposeFst<Arc> cfst(*fsa, *fsa, opts);
      std::vector<bool> coaccess;
      uint64 props = 0;
      SccVisitor<Arc> scc_visitor(0, 0, &coaccess, &props);
      DfsVisit(cfst, &scc_visitor);
      for (StateId s = 0; s < coaccess.size(); ++s) {
        if (coaccess[s]) {
          const StateTuple &tuple = opts.state_table->Tuple(s);
          related_.insert(tuple.StatePair());
        }
      }
      if (trans) delete fsa;
    }

    bool operator()(const StateId s1, StateId s2) const {
      std::pair<StateId, StateId> pr(s1, s2);
      return related_.count(pr) > 0;
    }

   private:
    // States s1 and s2 resp. are in this relation iff they there is a
    // path from s1 to a final state that has the same label as some
    // path from s2 to a final state.
    std::set<std::pair<StateId, StateId>> related_;
  };

  typedef std::multimap<ArcId, ArcId, ArcIdCompare> ArcIdMap;

  // Returns the arc corresponding to ArcId a
  static Arc GetArc(const Fst<Arc> &fst, ArcId a) {
    if (a.second == -1) {  // returns super-final transition
      Arc arc(kNoLabel, kNoLabel, fst.Final(a.first), kNoStateId);
      return arc;
    } else {
      ArcIterator<Fst<Arc>> aiter(fst, a.first);
      aiter.Seek(a.second);
      return aiter.Value();
    }
  }

  // Outputs an equivalent FST whose states are subsets of states
  // that have a future path in common.
  void PreDisambiguate(const ExpandedFst<Arc> &ifst, MutableFst<Arc> *ofst,
                       const DisambiguateOptions<Arc> &opts);

  // Finds transitions that are ambiguous candidates in the result of
  // PreDisambiguate.
  void FindAmbiguities(const ExpandedFst<Arc> &fst);

  // Finds transition pairs that are ambiguous candidates from two specified
  // source states.
  void FindAmbiguousPairs(const ExpandedFst<Arc> &fst, StateId s1, StateId s2);

  // Marks ambiguous transitions to be removed.
  void MarkAmbiguities();

  // Deletes spurious ambiguous transitions (due to quantization)
  void RemoveSplits(MutableFst<Arc> *ofst);

  // Deletes actual ambiguous transitions.
  void RemoveAmbiguities(MutableFst<Arc> *ofst);

  // States s1 and s2 are in this relation iff there is a path
  // from the initial state to s1 that has the same label as some path
  // from the initial state to s2.  We store only state pairs s1, s2
  // such that s1 <= s2.
  std::set<std::pair<StateId, StateId>> coreachable_;
  // Queue of disambiguation-related states to be processed. We store
  // only state pairs s1, s2 such that s1 <= s2.
  std::list<std::pair<StateId, StateId>> queue_;
  // Head state in the pre-disambiguation for a given state.
  std::vector<StateId> head_;
  // Maps from a candidate ambiguous arc A to each ambiguous candidate arc
  // B with the same label and destination state as A, whose source state s'
  // is coreachable with the source state s of A, and for which
  // head(s') < head(s).
  ArcIdMap *candidates_;
  // Set of ambiguous transitions to be removed.
  std::set<ArcId> ambiguous_;
  // States to merge due to quantization issues.
  UnionFind<StateId> *merge_;
  // Marks error condition.
  bool error_;
  DISALLOW_COPY_AND_ASSIGN(Disambiguator);
};

template <class Arc>
void Disambiguator<Arc>::PreDisambiguate(const ExpandedFst<Arc> &ifst,
                                         MutableFst<Arc> *ofst,
                                         const DisambiguateOptions<Arc> &opts) {
  typedef DefaultCommonDivisor<Weight> Div;
  typedef RelationDeterminizeFilter<Arc, CommonFuture> Filt;

  // Subset elements with states s1 and s2 resp. are in this relation
  // iff they there is a path from s1 to a final state that has the
  // same label as some path from s2 to a final state.
  CommonFuture *common_future = new CommonFuture(ifst);

  DeterminizeFstOptions<Arc, Div, Filt> nopts;
  nopts.delta = opts.delta;
  nopts.subsequential_label = opts.subsequential_label;
  nopts.filter = new Filt(ifst, common_future, &head_);
  nopts.gc_limit = 0;  // Cache only the last state for fastest copy.
  if (opts.weight_threshold != Weight::Zero() ||
      opts.state_threshold != kNoStateId) {
    /* TODO(riley): fails regression test; understand why
    if (ifst.Properties(kAcceptor, true)) {
      std::vector<Weight> idistance, odistance;
      ShortestDistance(ifst, &idistance, true);
      DeterminizeFst<Arc> dfst(ifst, &idistance, &odistance, nopts);
      PruneOptions< Arc, AnyArcFilter<Arc>> popts(opts.weight_threshold,
                                                   opts.state_threshold,
                                                   AnyArcFilter<Arc>(),
                                                   &odistance);
      Prune(dfst, ofst, popts);
      } else */ {
      *ofst = DeterminizeFst<Arc>(ifst, nopts);
      Prune(ofst, opts.weight_threshold, opts.state_threshold);
    }
  } else {
    *ofst = DeterminizeFst<Arc>(ifst, nopts);
  }
  head_.resize(ofst->NumStates(), kNoStateId);
}

template <class Arc>
void Disambiguator<Arc>::FindAmbiguities(const ExpandedFst<Arc> &fst) {
  if (fst.Start() == kNoStateId) return;

  candidates_ = new ArcIdMap(ArcIdCompare(head_));

  std::pair<StateId, StateId> start_pr(fst.Start(), fst.Start());
  coreachable_.insert(start_pr);
  queue_.push_back(start_pr);
  while (!queue_.empty()) {
    const std::pair<StateId, StateId> &pr = queue_.front();
    StateId s1 = pr.first;
    StateId s2 = pr.second;
    queue_.pop_front();
    FindAmbiguousPairs(fst, s1, s2);
  }
}

template <class Arc>
void Disambiguator<Arc>::FindAmbiguousPairs(const ExpandedFst<Arc> &fst,
                                            StateId s1, StateId s2) {
  if (fst.NumArcs(s2) > fst.NumArcs(s1)) FindAmbiguousPairs(fst, s2, s1);

  SortedMatcher<Fst<Arc>> matcher(fst, MATCH_INPUT);
  matcher.SetState(s2);
  for (ArcIterator<Fst<Arc>> aiter(fst, s1); !aiter.Done(); aiter.Next()) {
    const Arc &arc1 = aiter.Value();
    ArcId a1(s1, aiter.Position());
    if (matcher.Find(arc1.ilabel)) {
      for (; !matcher.Done(); matcher.Next()) {
        const Arc &arc2 = matcher.Value();
        if (arc2.ilabel == kNoLabel)  // implicit epsilon match
          continue;
        ArcId a2(s2, matcher.Position());

        // Actual transition is ambiguous
        if (s1 != s2 && arc1.nextstate == arc2.nextstate) {
          std::pair<ArcId, ArcId> apr;
          if (head_[s1] > head_[s2]) {
            apr = std::make_pair(a1, a2);
          } else {
            apr = std::make_pair(a2, a1);
          }
          candidates_->insert(apr);
        }

        std::pair<StateId, StateId> spr;
        if (arc1.nextstate <= arc2.nextstate) {
          spr = std::make_pair(arc1.nextstate, arc2.nextstate);
        } else {
          spr = std::make_pair(arc2.nextstate, arc1.nextstate);
        }
        // Not already marked as coreachable?
        if (coreachable_.find(spr) == coreachable_.end()) {
          coreachable_.insert(spr);
          // Only possible if state split by quantization issues
          if (spr.first != spr.second &&
              head_[spr.first] == head_[spr.second]) {
            if (!merge_) {
              merge_ = new UnionFind<StateId>(fst.NumStates(), kNoStateId);
              merge_->MakeAllSet(fst.NumStates());
            }
            merge_->Union(spr.first, spr.second);
          } else {
            queue_.push_back(spr);
          }
        }
      }
    }
  }

  // Super-final transition is ambiguous
  if (s1 != s2 && fst.Final(s1) != Weight::Zero() &&
      fst.Final(s2) != Weight::Zero()) {
    ArcId a1(s1, -1);
    ArcId a2(s2, -1);
    std::pair<ArcId, ArcId> apr;
    if (head_[s1] > head_[s2]) {
      apr = std::make_pair(a1, a2);
    } else {
      apr = std::make_pair(a2, a1);
    }
    candidates_->insert(apr);
  }
}

template <class Arc>
void Disambiguator<Arc>::MarkAmbiguities() {
  if (!candidates_) return;

  for (auto it = candidates_->begin(); it != candidates_->end(); ++it) {
    ArcId a = it->first;
    ArcId b = it->second;
    if (ambiguous_.count(b) == 0)  // if b is not to be removed
      ambiguous_.insert(a);        // ... then a is.
  }
  coreachable_.clear();
  delete candidates_;
  candidates_ = 0;
}

template <class Arc>
void Disambiguator<Arc>::RemoveSplits(MutableFst<Arc> *ofst) {
  if (!merge_) return;

  // 'Merges' split states to remove spurious ambiguities
  for (StateId s = 0; s < ofst->NumStates(); ++s) {
    for (MutableArcIterator<MutableFst<Arc>> aiter(ofst, s); !aiter.Done();
         aiter.Next()) {
      Arc arc = aiter.Value();
      StateId nextstate = merge_->FindSet(arc.nextstate);
      if (nextstate != arc.nextstate) {
        arc.nextstate = nextstate;
        aiter.SetValue(arc);
      }
    }
  }

  // Repeats search for actual ambiguities on modified FST
  coreachable_.clear();
  delete merge_;
  merge_ = 0;
  delete candidates_;
  candidates_ = 0;
  FindAmbiguities(*ofst);
  if (merge_) {  // shouldn't get here; sanity test
    FSTERROR() << "Disambiguate: Unable to remove spurious ambiguities";
    error_ = true;
    return;
  }
}

template <class Arc>
void Disambiguator<Arc>::RemoveAmbiguities(MutableFst<Arc> *ofst) {
  if (ambiguous_.empty()) return;
  // Adds dead state to redirect ambiguous transitions to be removed
  StateId dead = ofst->AddState();
  for (auto it = ambiguous_.begin(); it != ambiguous_.end(); ++it) {
    StateId s = it->first;
    ssize_t pos = it->second;
    if (pos >= 0) {  // actual transition
      MutableArcIterator<MutableFst<Arc>> aiter(ofst, s);
      aiter.Seek(pos);
      Arc arc = aiter.Value();
      arc.nextstate = dead;
      aiter.SetValue(arc);
    } else {  // super-final transition
      ofst->SetFinal(s, Weight::Zero());
    }
  }
  Connect(ofst);
  ambiguous_.clear();
}

// Disambiguates a weighted FST. This version writes the
// disambiguated FST to an output MutableFst. The result will
// be an equivalent FST that has the property that there are not
// two distinct paths from the initial state to a final state
// with the same input labeling.
//
// The weights must be (weakly) left divisible (valid for Tropical
// and LogWeight).
//
// Complexity:
// - Disambiguable: exponential (polynomial in the size of the output)
// - Non-disambiguable: does not terminate
//
// The disambiguable transducers include all automata and functional
// transducers that are unweighted or that are acyclic or that are unambiguous.
//
// References:
// - Mehryar Mohri and Michael Riley, "On the Disambiguation
//   of Weighted Automata," ArXiv e-prints, cs-FL/1405.0500, 2014,
//   http://arxiv.org/abs/1405.0500.
template <class Arc>
void Disambiguate(
    const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
    const DisambiguateOptions<Arc> &opts = DisambiguateOptions<Arc>()) {
  Disambiguator<Arc> disamb;
  disamb.Disambiguate(ifst, ofst, opts);
}

}  // namespace fst

#endif  // FST_LIB_DISAMBIGUATE_H_