This file is indexed.

/usr/include/fst/memory.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST memory utilities.

#ifndef FST_LIB_MEMORY_H_
#define FST_LIB_MEMORY_H_

#include <list>
#include <memory>
#include <utility>

#include <fst/types.h>
#include <fstream>

namespace fst {

//
// MEMORY ALLOCATION UTILITIES
//

// Default block allocation size
const int kAllocSize = 64;

// Minimum number of allocations per block
const int kAllocFit = 4;

// Base class for MemoryArena that allows e.g. MemoryArenaCollection to
// easily manipulate collections of variously sized arenas.
class MemoryArenaBase {
 public:
  virtual ~MemoryArenaBase() {}
  virtual size_t Size() const = 0;
};

// Allocates 'size' unintialized memory chunks of size sizeof(T) from
// underlying blocks of (at least) size 'block_size * sizeof(T)'.  All
// blocks are freed when this class is deleted. Result of allocate()
// will be aligned to sizeof(T).
template <typename T>
class MemoryArena : public MemoryArenaBase {
 public:
  explicit MemoryArena(size_t block_size = kAllocSize)
      : block_size_(block_size * sizeof(T)), block_pos_(0) {
    blocks_.push_front(new char[block_size_]);
  }

  ~MemoryArena() override {
    for (auto it = blocks_.begin(); it != blocks_.end(); ++it) {
      delete[] * it;
    }
  }

  void *Allocate(size_t size) {
    size_t byte_size = size * sizeof(T);
    if (byte_size * kAllocFit > block_size_) {
      // large block; add new large block
      char *ptr = new char[byte_size];
      blocks_.push_back(ptr);
      return ptr;
    }

    if (block_pos_ + byte_size > block_size_) {
      // Doesn't fit; add new standard block
      char *ptr = new char[block_size_];
      block_pos_ = 0;
      blocks_.push_front(ptr);
    }

    // Fits; use current block
    char *ptr = blocks_.front() + block_pos_;
    block_pos_ += byte_size;
    return ptr;
  }

  size_t Size() const override { return sizeof(T); }

 private:
  size_t block_size_;    // default block size in bytes
  size_t block_pos_;     // current position in block in bytes
  std::list<char *> blocks_;  // list of allocated blocks

  DISALLOW_COPY_AND_ASSIGN(MemoryArena);
};

// Base class for MemoryPool that allows e.g. MemoryPoolCollection to
// easily manipulate collections of variously sized pools.
class MemoryPoolBase {
 public:
  virtual ~MemoryPoolBase() {}
  virtual size_t Size() const = 0;
};

// Allocates and frees initially uninitialized memory chunks of size
// sizeof(T).  Keeps an internal list of freed chunks that are reused
// (as is) on the next allocation if available. Chunks are constructed
// in blocks of size 'pool_size'.  All memory is freed when the class is
// deleted. The result of Allocate() will be suitably memory-aligned.
//
// Combined with placement operator new and destroy fucntions for the
// T class, this can be used to improve allocation efficiency.  See
// nlp/fst/lib/visit.h (global new) and
// nlp/fst/lib/dfs-visit.h (class new) for examples of this usage.
template <typename T>
class MemoryPool : public MemoryPoolBase {
 public:
  struct Link {
    char buf[sizeof(T)];
    Link *next;
  };

  // 'pool_size' specifies the size of the initial pool and how it is extended
  explicit MemoryPool(size_t pool_size = kAllocSize)
      : mem_arena_(pool_size), free_list_(0) {}

  ~MemoryPool() override {}

  void *Allocate() {
    if (free_list_ == 0) {
      Link *link = static_cast<Link *>(mem_arena_.Allocate(1));
      link->next = 0;
      return link;
    } else {
      Link *link = free_list_;
      free_list_ = link->next;
      return link;
    }
  }

  void Free(void *ptr) {
    if (ptr) {
      Link *link = static_cast<Link *>(ptr);
      link->next = free_list_;
      free_list_ = link;
    }
  }

  size_t Size() const override { return sizeof(T); }

 private:
  MemoryArena<Link> mem_arena_;
  Link *free_list_;

  DISALLOW_COPY_AND_ASSIGN(MemoryPool);
};

//
// MEMORY ALLOCATION COLLECTION UTILITIES
//

// Stores a collection of memory arenas
class MemoryArenaCollection {
 public:
  // 'block_size' specifies the block size of the arenas
  explicit MemoryArenaCollection(size_t block_size = kAllocSize)
      : block_size_(block_size), ref_count_(1) {}

  ~MemoryArenaCollection() {
    for (size_t i = 0; i < arenas_.size(); ++i) delete arenas_[i];
  }

  template <typename T>
  MemoryArena<T> *Arena() {
    if (sizeof(T) >= arenas_.size()) arenas_.resize(sizeof(T) + 1, 0);
    MemoryArenaBase *arena = arenas_[sizeof(T)];
    if (arena == 0) {
      arena = new MemoryArena<T>(block_size_);
      arenas_[sizeof(T)] = arena;
    }
    return static_cast<MemoryArena<T> *>(arena);
  }

  size_t BlockSize() const { return block_size_; }

  size_t RefCount() const { return ref_count_; }
  size_t IncrRefCount() { return ++ref_count_; }
  size_t DecrRefCount() { return --ref_count_; }

 private:
  size_t block_size_;
  size_t ref_count_;
  std::vector<MemoryArenaBase *> arenas_;

  DISALLOW_COPY_AND_ASSIGN(MemoryArenaCollection);
};

// Stores a collection of memory pools
class MemoryPoolCollection {
 public:
  // 'pool_size' specifies the size of initial pool and how it is extended
  explicit MemoryPoolCollection(size_t pool_size = kAllocSize)
      : pool_size_(pool_size), ref_count_(1) {}

  ~MemoryPoolCollection() {
    for (size_t i = 0; i < pools_.size(); ++i) delete pools_[i];
  }

  template <typename T>
  MemoryPool<T> *Pool() {
    if (sizeof(T) >= pools_.size()) pools_.resize(sizeof(T) + 1, 0);
    MemoryPoolBase *pool = pools_[sizeof(T)];
    if (pool == 0) {
      pool = new MemoryPool<T>(pool_size_);
      pools_[sizeof(T)] = pool;
    }
    return static_cast<MemoryPool<T> *>(pool);
  }

  size_t PoolSize() const { return pool_size_; }

  size_t RefCount() const { return ref_count_; }
  size_t IncrRefCount() { return ++ref_count_; }
  size_t DecrRefCount() { return --ref_count_; }

 private:
  size_t pool_size_;
  size_t ref_count_;
  std::vector<MemoryPoolBase *> pools_;

  DISALLOW_COPY_AND_ASSIGN(MemoryPoolCollection);
};

//
// STL MEMORY ALLOCATORS
//

// STL allocator using memory arenas. Memory is allocated from
// underlying blocks of size 'block_size * sizeof(T)'. Memory is freed
// only when all objects using this allocator are destroyed and there
// is otherwise no reuse (unlike PoolAllocator).
//
// This allocator has object-local state so it should not be used with
// splicing or swapping operations between objects created with
// different allocators nor should it be used if copies must be
// thread-safe. The result of allocate() will be suitably
// memory-aligned.
template <typename T>
class BlockAllocator {
 public:
  typedef std::allocator<T> A;
  typedef typename A::size_type size_type;
  typedef typename A::difference_type difference_type;
  typedef typename A::pointer pointer;
  typedef typename A::const_pointer const_pointer;
  typedef typename A::reference reference;
  typedef typename A::const_reference const_reference;
  typedef typename A::value_type value_type;

  template <typename U>
  struct rebind {
    typedef BlockAllocator<U> other;
  };

  explicit BlockAllocator(size_t block_size = kAllocSize)
      : arenas_(new MemoryArenaCollection(block_size)) {}

  BlockAllocator(const BlockAllocator<T> &arena_alloc)
      : arenas_(arena_alloc.Arenas()) {
    Arenas()->IncrRefCount();
  }

  template <typename U>
  BlockAllocator(const BlockAllocator<U> &arena_alloc)
      : arenas_(arena_alloc.Arenas()) {
    Arenas()->IncrRefCount();
  }

  ~BlockAllocator() {
    if (Arenas()->DecrRefCount() == 0) delete Arenas();
  }

  pointer address(reference ref) const { return A().address(ref); }

  const_pointer address(const_reference ref) const { return A().address(ref); }

  size_type max_size() const { return A().max_size(); }

  template <class U, class... Args>
  void construct(U *p, Args &&... args) {
    A().construct(p, std::forward<Args>(args)...);
  }

  void destroy(pointer p) { A().destroy(p); }

  pointer allocate(size_type n, const void *hint = 0) {
    if (n * kAllocFit <= kAllocSize) {
      return static_cast<pointer>(Arena()->Allocate(n));
    } else {
      return A().allocate(n, hint);
    }
  }

  void deallocate(pointer p, size_type n) {
    if (n * kAllocFit > kAllocSize) {
      A().deallocate(p, n);
    }
  }

  MemoryArenaCollection *Arenas() const { return arenas_; }

 private:
  MemoryArena<T> *Arena() { return arenas_->Arena<T>(); }

  MemoryArenaCollection *arenas_;

  BlockAllocator<T> operator=(const BlockAllocator<T> &);
};

template <typename T, typename U>
bool operator==(const BlockAllocator<T> &alloc1,
                const BlockAllocator<U> &alloc2) {
  return false;
}

template <typename T, typename U>
bool operator!=(const BlockAllocator<T> &alloc1,
                const BlockAllocator<U> &alloc2) {
  return true;
}

// STL allocator using memory pools. Memory is allocated from underlying
// blocks of size 'block_size * sizeof(T)'. Keeps an internal list of freed
// chunks thare are reused on the next allocation.
//
// This allocator has object-local state so it should not be used with
// splicing or swapping operations between objects created with
// different allocators nor should it be used if copies must be
// thread-safe. The result of allocate() will be suitably
// memory-aligned.
template <typename T>
class PoolAllocator {
 public:
  typedef std::allocator<T> A;
  typedef typename A::size_type size_type;
  typedef typename A::difference_type difference_type;
  typedef typename A::pointer pointer;
  typedef typename A::const_pointer const_pointer;
  typedef typename A::reference reference;
  typedef typename A::const_reference const_reference;
  typedef typename A::value_type value_type;

  template <typename U>
  struct rebind {
    typedef PoolAllocator<U> other;
  };

  explicit PoolAllocator(size_t pool_size = kAllocSize)
      : pools_(new MemoryPoolCollection(pool_size)) {}

  PoolAllocator(const PoolAllocator<T> &pool_alloc)
      : pools_(pool_alloc.Pools()) {
    Pools()->IncrRefCount();
  }

  template <typename U>
  PoolAllocator(const PoolAllocator<U> &pool_alloc)
      : pools_(pool_alloc.Pools()) {
    Pools()->IncrRefCount();
  }

  ~PoolAllocator() {
    if (Pools()->DecrRefCount() == 0) delete Pools();
  }

  pointer address(reference ref) const { return A().address(ref); }

  const_pointer address(const_reference ref) const { return A().address(ref); }

  size_type max_size() const { return A().max_size(); }

  template <class U, class... Args>
  void construct(U *p, Args &&... args) {
    A().construct(p, std::forward<Args>(args)...);
  }

  void destroy(pointer p) { A().destroy(p); }

  pointer allocate(size_type n, const void *hint = 0) {
    if (n == 1) {
      return static_cast<pointer>(Pool<1>()->Allocate());
    } else if (n == 2) {
      return static_cast<pointer>(Pool<2>()->Allocate());
    } else if (n <= 4) {
      return static_cast<pointer>(Pool<4>()->Allocate());
    } else if (n <= 8) {
      return static_cast<pointer>(Pool<8>()->Allocate());
    } else if (n <= 16) {
      return static_cast<pointer>(Pool<16>()->Allocate());
    } else if (n <= 32) {
      return static_cast<pointer>(Pool<32>()->Allocate());
    } else if (n <= 64) {
      return static_cast<pointer>(Pool<64>()->Allocate());
    } else {
      return A().allocate(n, hint);
    }
  }

  void deallocate(pointer p, size_type n) {
    if (n == 1) {
      Pool<1>()->Free(p);
    } else if (n == 2) {
      Pool<2>()->Free(p);
    } else if (n <= 4) {
      Pool<4>()->Free(p);
    } else if (n <= 8) {
      Pool<8>()->Free(p);
    } else if (n <= 16) {
      Pool<16>()->Free(p);
    } else if (n <= 32) {
      Pool<32>()->Free(p);
    } else if (n <= 64) {
      Pool<64>()->Free(p);
    } else {
      A().deallocate(p, n);
    }
  }

  MemoryPoolCollection *Pools() const { return pools_; }

 private:
  template <int n>
  struct TN {
    T buf[n];
  };

  template <int n>
  MemoryPool<TN<n>> *Pool() {
    return pools_->Pool<TN<n>>();
  }

  MemoryPoolCollection *pools_;

  PoolAllocator<T> operator=(const PoolAllocator<T> &);
};

template <typename T, typename U>
bool operator==(const PoolAllocator<T> &alloc1,
                const PoolAllocator<U> &alloc2) {
  return false;
}

template <typename T, typename U>
bool operator!=(const PoolAllocator<T> &alloc1,
                const PoolAllocator<U> &alloc2) {
  return true;
}

}  // namespace fst

#endif  // FST_LIB_MEMORY_H_