/usr/include/ga/GATree.h is in libga-dev 1:2.4.7-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | // $Header$
/* ----------------------------------------------------------------------------
treetmpl.h
mbwall 25feb95
Copyright 1995 Massachusetts Institute of Technology
DESCRIPTION:
This defines the templatized tree objects.
---------------------------------------------------------------------------- */
#ifndef _ga_treetmpl_h_
#define _ga_treetmpl_h_
#include <ga/gaerror.h>
#include <ga/GATreeBASE.h>
/* ----------------------------------------------------------------------------
GATree
-------------------------------------------------------------------------------
This object is a container for nodes that have a tree structure. The base
tree object is responsible for maintaining the tree heirarchy. This object is
responsible for doing the memory management (allocating and de-allocating the
nodes in the tree). We insulate the user entirely from nodes - when you use
a tree, you don't get nodes back, you get the contents of nodes (ie the user
doesn't have to think about the tree parts of a node, they can simply assume
that their data is organized into a tree structure).
We include an iterator in this object so that you can navigate through the
tree. You can create another iterator and assign it to your tree so you can
have multiple iterators.
All of the actions take place relative to the current location of the
embedded iterator. None of the iterators change the state of the tree. Be
careful so that you don't end up with an iterator dangling with a pointer to
a part of a tree that no longer exists (I would need some kind of reference
counting and/or message passing to take care of this at a lower level, and I'm
not ready to implement that at this point).
For now we allocate nodes on the fly. Eventually I would like to do some
better memory management (arrays perhaps?) so we don't have to do so much
alloc and dealloc and recursion.
We depend on the template-ized GATreeIter routine, thus the declaration.
copy
Make a copy of the specified tree. Iterator goes to root node (should go to
appropriate node in copy, but we don't do that yet).
clone
Allocate space and make a copy of the tree and return a pointer to the new
one. The iterator of the original is not affected. The iterator of the
clone is set to the appropriate place in the clone. If you specify a node
index when you call clone then a clone of the subtree is made and the
iterator in the clone is set to the root node (the top of the subtree).
remove
Remove the current node (and its subtree) from the tree and stick it into a
new tree. Returns a pointer to the new tree. Leaves the original iterator
pointing to the eldest child or parent of the node that was removed. Iter
of the new tree points to the root node.
destroy
Destroys the node and subtree where the iterator is currently pointing.
Moves the iterator to the eldest sibling or parent of the node that was
deleted from the tree.
swap
Swap nodes in a tree, leaves the nodes' subtrees in place (subtrees do not
move with the nodes in the swap).
swaptree - tree
Swap subtrees referenced by the iterators of this and the second tree. The
iterators are reset to point to the new subtrees (same point in the trees,
but different nodes due to the swap).
swaptree - indices
Swap the subtrees referenced by the integer values. Indices must not be
related (ie one cannot be ancestor of the other). Iterator is not changed.
insert - tree
Inserts the contents of tree in to the current tree and removes it from the
original tree. Does NOT delete the original tree, but DOES assume
responsibility for the memory used by original tree contents.
insert - object
Inserts the object into a new node relative to the location of the iterator
root, current, next, prev, parent, child, warp
These iterator methods are defined as access to the embedded iterator of the
tree. Use these methods to move the insertion point and to traverse the
tree. You can also create other iterators for this tree, but they won't
affect the contents.
---------------------------------------------------------------------------- */
template <class T> class GATreeIter;
template <class T>
class GATree : public GATreeBASE {
public:
GATree() : GATreeBASE() { iter(*this); }
GATree(const T & t) : GATreeBASE(new GANode<T>(t)), iter(*this) {}
GATree(const GATree<T> & orig){iter(*this); copy(orig);}
GATree<T> & operator=(const GATree<T> & orig)
{if(&orig != this) copy(orig); return *this;}
virtual ~GATree();
GATree<T> * clone(unsigned int i=0) const;
// methods that modify the state of the tree
void copy(const GATree<T> & orig);
int destroy();
int swaptree(GATree<T> * t);
int swaptree(unsigned int, unsigned int);
int swap(unsigned int, unsigned int);
GATree<T> * remove();
int insert(GATree<T> * t, GATreeBASE::Location where=GATreeBASE::BELOW){
if(this == t){
GAErr(GA_LOC, "GATree", "insert", gaErrCannotInsertIntoSelf);
return GATreeBASE::ERR;
}
if(GATreeBASE::insert(t->rt, iter.node, where) == GATreeBASE::ERR){
return GATreeBASE::ERR;
}
iter.node = (t->rt ? t->rt : iter.node);
t->rt=(GANodeBASE *)0; t->iter.node=(GANodeBASE *)0;
return GATreeBASE::NO_ERR;
}
int insert(const T & t, GATreeBASE::Location where=GATreeBASE::BELOW){
GANode<T> * c = new GANode<T>(t);
if(GATreeBASE::insert(c, iter.node, where) == GATreeBASE::ERR){
delete c;
return GATreeBASE::ERR;
}
iter.node = c;
return GATreeBASE::NO_ERR;
}
// typesafes on iteration methods. These call the built-in iterator then
// return the contents of the now-current node. They do not affect the state
// of the tree.
T * root(){return iter.root();}
T * current(){return iter.current();}
T * next(){return iter.next();}
T * prev(){return iter.prev();}
T * parent(){return iter.parent();}
T * child(){return iter.child();}
T * eldest(){return iter.eldest();}
T * youngest(){return iter.youngest();}
T * warp(unsigned int i){return iter.warp(i);}
T * warp(const GATreeIter<T> & i)
{return((i.tree == this) ? iter.warp(i) : (T *)0);}
int nchildren(){return iter.nchildren();}
int nsiblings(){return iter.nsiblings();}
protected:
int insert(GANode<T> *n, GANode<T> *idx,
GATreeBASE::Location where=GATreeBASE::BELOW){
if(GATreeBASE::insert(n, idx, where) == GATreeBASE::ERR)
return GATreeBASE::ERR;
iter.node = n;
return GATreeBASE::NO_ERR;
}
GATreeIter<T> iter;
friend class GATreeIter<T>;
};
/* ----------------------------------------------------------------------------
GATreeIter
-------------------------------------------------------------------------------
This is a type-safe derivation of the base TreeIter object. I copied the
methods from the base class (I know, a no-no) rather than doing calls to the
base class methods.
We depend on the template-ized GATree, thus the declaration.
Behaviour for the iterator methods is defined as follows. If the current
node is null, attempts to access a derived position from the current position
will return NULL. The only way to reset the current node is to call the root()
locater (you always have to start at the tree root to navigate the tree). If
the current node is non-null and the derived node is null, the current node is
NOT changed, but NULL is returned.
When we create a new tree iterator, it defaults to the same node as the one
used to create it. If it is created with a tree as its argument, it defaults
to the tree's iterator's current position.
---------------------------------------------------------------------------- */
template <class T> class GATree;
template <class T>
class GATreeIter : public GATreeIterBASE {
public:
GATreeIter() : GATreeIterBASE(){}
GATreeIter(const GATree<T> & t) : GATreeIterBASE(t){node=t.iter.node;}
GATreeIter(const GATreeIter<T> & i) : GATreeIterBASE(i){}
T * current()
{return(node ?
&((GANode<T> *)node)->contents : (T *)0);}
T * root()
{return(((node=GATreeIterBASE::root()) != (GANodeBASE *)0) ?
&((GANode<T> *)GATreeIterBASE::root(node))->contents : (T *)0);}
T * next()
{return((node && node->next) ?
&((GANode<T> *)(node=node->next))->contents : (T *)0);}
T * prev()
{return((node && node->prev) ?
&((GANode<T> *)(node=node->prev))->contents : (T *)0);}
T * parent()
{return((node && node->parent) ?
&((GANode<T> *)(node=node->parent))->contents : (T *)0);}
T * child()
{return((node && node->child) ?
&((GANode<T> *)(node=node->child))->contents : (T *)0);}
T * eldest()
{return(node ? &((GANode<T> *)GATreeIterBASE::eldest(node))->contents :
(T *)0);}
T * youngest()
{return(node ? &((GANode<T> *)GATreeIterBASE::youngest(node))->contents :
(T *)0);}
T * warp(const GATree<T> & t){
tree = &t;
node = t.iter.node;
return(t.iter.node ? &((GANode<T> *)(node=t.iter.node))->contents :(T *)0);
}
T * warp(const GATreeIter<T> & i){
tree = i.tree;
node = i.node;
return(i.node ? &((GANode<T> *)(node=i.node))->contents : (T *)0);
}
T * warp(unsigned int i){
GANodeBASE * n = GATreeIterBASE::warp(i);
return(n ? &((GANode<T> *)(node=n))->contents : (T *)0);
}
private:
friend class GATree<T>;
};
#ifdef GALIB_USE_BORLAND_INST
#include <ga/GATree.C>
#endif
#endif
|