This file is indexed.

/usr/share/doc/libghc-lazysmallcheck-dev/examples/Countdown.hs is in libghc-lazysmallcheck-dev 0.6-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
module Countdown where

-----------------------------------------------------------------------------
--
--                           The Countdown Problem
--
--                               Graham Hutton
--                         University of Nottingham
--
--                               November 2001
--
-----------------------------------------------------------------------------

-----------------------------------------------------------------------------
-- Formally specifying the problem
-----------------------------------------------------------------------------

data Op               = Add | Sub | Mul | Div
  deriving Eq

valid                :: Op -> Int -> Int -> Bool
valid Add _ _         = True
valid Sub x y         = x > y
valid Mul _ _         = True
valid Div x y         = x `mod` y == 0

apply                :: Op -> Int -> Int -> Int
apply Add x y         = x + y
apply Sub x y         = x - y
apply Mul x y         = x * y
apply Div x y         = x `div` y

data Expr             = Val Int | App Op Expr Expr
  deriving Eq

values               :: Expr -> [Int]
values (Val n)        = [n]
values (App _ l r)    = values l ++ values r

eval                 :: Expr -> [Int]
eval (Val n)          = [n | n > 0]
eval (App o l r)      = [apply o x y | x <- eval l, y <- eval r, valid o x y]

subbags              :: [a] -> [[a]]
subbags xs            = [zs | ys <- subs xs, zs <- perms ys]

subs                 :: [a] -> [[a]]
subs []               = [[]]
subs (x:xs)           = ys ++ map (x:) ys
                        where
                           ys = subs xs

perms                :: [a] -> [[a]]
perms []              = [[]]
perms (x:xs)          = concat (map (interleave x) (perms xs))

interleave           :: a -> [a] -> [[a]]
interleave x []       = [[x]]
interleave x (y:ys)   = (x:y:ys) : map (y:) (interleave x ys)

solution             :: Expr -> [Int] -> Int -> Bool
solution e ns n       = elem (values e) (subbags ns) && eval e == [n]

-----------------------------------------------------------------------------
-- Brute force implementation
-----------------------------------------------------------------------------

split                :: [a] -> [([a],[a])]
split []              = [([],[])]
split (x:xs)          = ([],x:xs) : [(x:ls,rs) | (ls,rs) <- split xs]

nesplit              :: [a] -> [([a],[a])]
nesplit               = filter ne . split

ne                   :: ([a],[b]) -> Bool
ne (xs,ys)            = not (null xs || null ys)

exprs                :: [Int] -> [Expr]
exprs []              = []
exprs [n]             = [Val n]
exprs ns              = [e | (ls,rs) <- nesplit ns
                           , l       <- exprs ls
                           , r       <- exprs rs
                           , e       <- combine l r]

combine              :: Expr -> Expr -> [Expr]
combine l r           = [App o l r | o <- ops]

ops                  :: [Op]
ops                   = [Add,Sub,Mul,Div]

solutions            :: [Int] -> Int -> [Expr]
solutions ns n        = [e | ns' <- subbags ns, e <- exprs ns', eval e == [n]]

-----------------------------------------------------------------------------
-- Fusing generation and evaluation
-----------------------------------------------------------------------------

type Result           = (Expr,Int)

results              :: [Int] -> [Result]
results []            = []
results [n]           = [(Val n,n) | n > 0]
results ns            = [res | (ls,rs) <- nesplit ns
                             , lx      <- results ls
                             , ry      <- results rs
                             , res     <- combine' lx ry]

combine'             :: Result -> Result -> [Result]
combine' (l,x) (r,y)  = [(App o l r, apply o x y) | o <- ops, valid o x y]

solutions'           :: [Int] -> Int -> [Expr]
solutions' ns n       = [e | ns' <- subbags ns, (e,m) <- results ns', m == n]

-----------------------------------------------------------------------------
-- Exploiting arithmetic properties
-----------------------------------------------------------------------------

valid'               :: Op -> Int -> Int -> Bool
valid' Add x y        = x <= y
valid' Sub x y        = x > y
valid' Mul x y        = x /= 1 && y /= 1 && x <= y
valid' Div x y        = y /= 1 && x `mod` y == 0

eval'                :: Expr -> [Int]
eval' (Val n)         = [n | n > 0]
eval' (App o l r)     = [apply o x y | x <- eval' l, y <- eval' r, valid' o x y]

solution'            :: Expr -> [Int] -> Int -> Bool
solution' e ns n      = elem (values e) (subbags ns) && eval' e == [n]

results'             :: [Int] -> [Result]
results' []           = []
results' [n]          = [(Val n,n) | n > 0]
results' ns           = [res | (ls,rs) <- nesplit ns
                             , lx      <- results' ls
                             , ry      <- results' rs
                             , res     <- combine'' lx ry]

combine''            :: Result -> Result -> [Result]
combine'' (l,x) (r,y) = [(App o l r, apply o x y) | o <- ops, valid' o x y]

solutions''          :: [Int] -> Int -> [Expr]
solutions'' ns n      = [e | ns' <- subbags ns, (e,m) <- results' ns', m == n]

-----------------------------------------------------------------------------
-- Interactive version for testing
-----------------------------------------------------------------------------

instance Show Op where
   show Add           = "+"
   show Sub           = "-"
   show Mul           = "*"
   show Div           = "/"

instance Show Expr where
   show (Val n)       = show n
   show (App o l r)   = bracket l ++ show o ++ bracket r
                        where
                           bracket (Val n) = show n
                           bracket e       = "(" ++ show e ++ ")"

display              :: [Expr] -> IO ()
display []            = putStr "\nThere are no solutions.\n\n"
display (e:es)        = do putStr "\nOne possible solution is "
                           putStr (show e)
	                   putStr ".\n\nPress return to continue searching..."
                           getLine
                           putStr "\n"
                           if null es then
                               putStr "There are no more solutions.\n\n"
                            else
                               do sequence [print e | e <- es]
                                  putStr "\nThere were "
                                  putStr (show (length (e:es)))
                                  putStr " solutions in total.\n\n"

-- Properties

infixr 0 -->
False --> _ = True
True --> x = x

prop_lemma1 :: ([Int], [Int], [Int]) -> Bool
prop_lemma1 (xs, ys, zs) = ((xs,ys) `elem` split zs) == (xs ++ ys == zs)

prop_lemma3 :: ([Int], [Int], [Int]) -> Bool
prop_lemma3 (xs, ys, zs) = ((xs, ys) `elem` nesplit zs)
                             == (xs ++ ys == zs && ne (xs, ys))

prop_lemma4 :: ([Int], [Int], [Int]) -> Bool
prop_lemma4 (xs, ys, zs) = ((xs, ys) `elem` nesplit zs) -->
                             (length xs < length zs && length ys < length zs)

prop_solutions (ns, m) = solutions ns m == solutions' ns m