This file is indexed.

/usr/include/givaro/gf2.h is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
// ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Original authors (LinBox): B. Hovinen, JG Dumas, C. Pernet
// Imported and adapted by: A. Breust
// ==========================================================================

#ifndef __Givaro_field_gf2_H
#define __Givaro_field_gf2_H

#include <iostream>
#include <climits>
#include <cmath>

#include "givaro-config.h"
#include "givaro/ring-interface.h"
#include "givaro/udl.h"

namespace Givaro
{
	/**
	 * \brief Integers modulo 2
	 *
	 * This is a tuned implementation of the field of integers modulo
	 * 2. In particular, when one constructs a VectorDomain object over
	 * this field, highly optimized bit operations will be used to make
	 * vector arithmetic very fast.
	 \ingroup field
	 */

	class GF2 : public virtual FiniteFieldInterface<bool>
	{
	public:
		const bool zero = false;
		const bool one  = true;
		const bool mOne = true;

		/** Element type
		*/
		using Self_t = GF2;
		using Residu_t = uint8_t;
		using Element = FiniteFieldInterface<bool>::Element;
		using BitVector = std::vector<bool>;
		using BitReference = BitVector::reference;
		
		/** Random
		*/
		using RandIter = GIV_randIter<Self_t, bool>;
		Element& random(const GivRandom& g, Element& e) const 
		    { return e = static_cast<bool>(g() & 1u); } 

		/** @name Object Management
		*/
		//@{

		/** Default constructor.
		*/
		GF2 () {}
		GF2 (int p, int exp = 1)
		{
			assert(p == 2);
			assert(exp == 1);
		}

		/** Copy constructor.
		 * Constructs Givaro::GF2 object by copying the field.
		 * This is required to allow field objects to be passed by value
		 * into functions.
		 * @param  F Givaro::GF2 object.
		 */
		GF2 (const GF2& F) {}

		/** Assignment operator.
		 * Required by the archetype
		 *
		 * @param F constant reference to Givaro::Modular object
		 * @return reference to Givaro::Modular object for self
		 */
		GF2& operator=(const GF2& F)
		{
			return *this;
		}
		
        /** Accessors
         */
		inline Element minElement() const { return false; }
		inline Element maxElement() const { return true; }

        /** Access to the modulus
         */
        inline Residu_t residu() const { return 2_ui8; }
        inline Residu_t size() const { return 2_ui8; }
        inline Residu_t characteristic() const { return 2_ui8; }
        inline Residu_t cardinality() const { return 2_ui8; }
        template<class T> inline T& characteristic(T& p) const { return p = 2u; }
        template<class T> inline T& cardinality(T& p) const { return p = 2u; }

		/** Initialization of field base element from an Integer.
		 * Behaves like C++ allocator construct.
		 * This function assumes the output field base element x has already been
		 * constructed, but that it is not already initialized.
		 * This is not a specialization of the template function because
		 * such a specialization is not allowed inside the class declaration.
		 * @return reference to field base element.
		 * @param x field base element to contain output (reference returned).
		 * @param y Integer.
		 */
		Element& init (Element& x, const int32_t &y ) const
		{
			return x = y & 1;
		}

		Element& init (Element& x, const uint32_t &y ) const
		{
			return x = y & 1;
		}

		Element& init (Element& x, const int64_t &y ) const
		{
			return x = y & 1;
		}

		Element& init (Element& x, const uint64_t &y ) const
		{
			return x = y & 1;
		}

		Element& init (Element& x, const float &y) const
		{
			return x = static_cast<unsigned char>(y) & 1;
		}

		Element& init (Element& x, const double &y) const
		{
			return x = static_cast<unsigned char>(y) & 1;
		}

		Element& init (Element& x, const Integer& y) const
		{
			return x = y & (uint32_t)1;
		}


		Element& init(Element& x) const
		{
			return x = false;
		}

		BitReference init(BitReference x, const Integer& y = 0) const
		{
			return x = y & (uint32_t)1;
		}

		/** Conversion of field base element to a template class T.
		 * This function assumes the output field base element x has already been
		 * constructed, but that it is not already initialized.
		 * @return reference to template class T.
		 * @param x template class T to contain output (reference returned).
		 * @param y constant field base element.
		 */
		Integer& convert (Integer& x, const Element& y) const
		{
			return x = y;
		}

		BitReference convert (BitReference x, const Element& y) const
		{
			return x = y;
		}

		template<class T>
		T& convert (T& x, const Element& y) const
		{
			return x = Caster<T>(y);
		}

		/** Assignment of one field base element to another.
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& assign (Element& x, const Element& y) const
		{
			return x = y;
		}

		BitReference assign (BitReference x, const Element& y) const
		{
			return x = y;
		}

		/** Cardinality.
		 * Return Integer representing cardinality of the domain.
		 * Returns a non-negative Integer for all domains with finite
		 * cardinality, and returns -1 to signify a domain of infinite
		 * cardinality.
		 * @return Integer representing cardinality of the domain
		 */
		Integer& cardinality (Integer& c) const
		{
			return c = 2;
		}

		/** Characteristic.
		 * Return Integer representing characteristic of the domain.
		 * Returns a positive Integer to all domains with finite characteristic,
		 * and returns 0 to signify a domain of infinite characteristic.
		 * @return Integer representing characteristic of the domain.
		 */
		Integer& characteristic (Integer& c) const
		{
			return c = 2;
		}

		//@} Object Management

		/** @name Arithmetic Operations
		 * x <- y op z; x <- op y
		 * These operations require all elements, including x, to be initialized
		 * before the operation is called.  Uninitialized field base elements will
		 * give undefined results.
		 */
		//@{

		/** Equality of two elements.
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return boolean true if equal, false if not.
		 * @param  x field base element
		 * @param  y field base element
		 */
		bool areEqual (const Element& x, const Element& y) const
		{
			return x == y;
		}

		/** Zero equality.
		 * Test if field base element is equal to zero.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return boolean true if equals zero, false if not.
		 * @param  x field base element.
		 */
		bool isZero (const Element& x) const
		{
			return !x;
		}

		/** One equality.
		 * Test if field base element is equal to one.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return boolean true if equals one, false if not.
		 * @param  x field base element.
		 */
		bool isOne (const Element& x) const
		{
			return x;
		}

		/** MOne equality.
		 * Test if field base element is equal to one.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return boolean true if equals one, false if not.
		 * @param  x field base element.
		 */
		bool isMOne (const Element& x) const
		{
			return x;
		}

		//@} Arithmetic Operations

		/** @name Input/Output Operations */
		//@{

		/** Print field.
		 * @return output stream to which field is written.
		 * @param  os  output stream to which field is written.
		 */
		std::ostream& write (std::ostream& os) const;

		/** Read field.
		 * @return input stream from which field is read.
		 * @param  is  input stream from which field is read.
		 */
		std::istream& read (std::istream& is);

		/** Print field base element.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return output stream to which field base element is written.
		 * @param  os  output stream to which field base element is written.
		 * @param  x   field base element.
		 */
		std::ostream& write (std::ostream& os, const Element& x) const;

		/** Read field base element.
		 * @pre This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return input stream from which field base element is read.
		 * @param  is  input stream from which field base element is read.
		 * @param  x   field base element.
		 */
		std::istream& read (std::istream& is, Element& x) const;
		std::istream &read (std::istream &is, BitReference x) const;

		//@}

		/** @name Arithmetic Operations
		 * x <- y op z; x <- op y
		 * These operations require all elements, including x, to be initialized
		 * before the operation is called.  Uninitialized field base elements will
		 * give undefined results.
		 */
		//@{

		/** Addition.
		 * x = y + z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element& add (Element& x, const Element& y, const Element& z) const;
		BitReference add (BitReference x, const Element& y, const Element& z) const;

		/** Subtraction.
		 * x = y - z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element& sub (Element& x, const Element& y, const Element& z) const;
		BitReference sub (BitReference x, const Element& y, const Element& z) const;

		/** Multiplication.
		 * x = y * z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element& mul (Element& x, const Element& y, const Element& z) const;
		BitReference mul (BitReference x, const Element& y, const Element& z) const;

		/** Division.
		 * x = y / z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element& div (Element& x, const Element& y, const Element& z ) const;
		BitReference div (BitReference x, const Element& y, const Element& z ) const;

		/** Additive Inverse (Negation).
		 * x = - y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& neg (Element& x, const Element& y) const;
		BitReference neg (BitReference x, const Element& y) const;

		/** Multiplicative Inverse.
		 * x = 1 / y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& inv (Element& x, const Element& y) const;
		BitReference inv (BitReference x, const Element& y) const;

		/** Natural AXPY.
		 * @return reference to r.
		 * @param  r
		 * @param  a
		 * @param  x
		 * @param  y
		 */
		BitReference axpy (BitReference r, const Element& a, const Element& x, const Element& y) const;
		Element& axpy (Element& r, const Element& a, const Element& x, const Element& y) const;

		/** Natural AXMY.
		 * @return reference to r.
		 * @param  r
		 * @param  a
		 * @param  x
		 * @param  y
		 */
		BitReference axmy (BitReference r, const Element& a, const Element& x, const Element& y) const;
		Element& axmy (Element& r, const Element& a, const Element& x, const Element& y) const;

		/** Natural MAXPY.
		 * @return reference to r.
		 * @param  r
		 * @param  a
		 * @param  x
		 * @param  y
		 */
		BitReference maxpy (BitReference r, const Element& a, const Element& x, const Element& y) const;
		Element& maxpy (Element& r, const Element& a, const Element& x, const Element& y) const;

		//@} Arithmetic Operations

		/** @name Inplace Arithmetic Operations
		 * x <- x op y; x <- op x
		 */
		//@{

		/** Inplace Addition.
		 * x += y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& addin (Element& x, const Element& y) const;
		BitReference addin (BitReference x, const Element& y) const;

		/** Inplace Subtraction.
		 * x -= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& subin (Element& x, const Element& y) const;
		BitReference subin (BitReference x, const Element& y) const;
		
		/** Inplace Multiplication.
		 * x *= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& mulin (Element& x, const Element& y) const;
		BitReference mulin (BitReference x, const Element& y) const;

		/** Inplace Division.
		 * x /= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element& divin (Element& x, const Element& y) const;
		BitReference divin (BitReference x, const Element& y) const;

		/** Inplace Additive Inverse (Inplace Negation).
		 * x = - x
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 */
		Element& negin (Element& x) const;
		BitReference negin (BitReference x) const;

		/** Inplace Multiplicative Inverse.
		 * x = 1 / x
		 * This function assumes the field base elementhas already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 */
		Element& invin (Element& x) const;
		BitReference invin (BitReference x) const;

		/** Inplace AXPY.
		 * @return reference to r.
		 * @param  r field element (reference returned).
		 * @param  a field element.
		 * @param  x field element.
		 */
		Element& axpyin (Element& r, const Element& a, const Element& x) const;
		BitReference axpyin (BitReference r, const Element& a, const Element& x) const;

		/** Inplace AXMY.
		 * @return reference to r.
		 * @param  r field element (reference returned).
		 * @param  a field element.
		 * @param  x field element.
		 */
		Element& axmyin (Element& r, const Element& a, const Element& x) const;
		BitReference axmyin (BitReference r, const Element& a, const Element& x) const;

		/** Inplace MAXPY.
		 * @return reference to r.
		 * @param  r field element (reference returned).
		 * @param  a field element.
		 * @param  x field element.
		 */
		Element& maxpyin (Element& r, const Element& a, const Element& x) const;
		BitReference maxpyin (BitReference r, const Element& a, const Element& x) const;

		//@} Inplace Arithmetic Operations

		static inline int maxCardinality()
		{
			return 2;
		}

	}; // class GF2
}

#include "givaro/gf2.inl"

#endif