/usr/include/givaro/givhighorder.h is in libgivaro-dev 4.0.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | // ===============================================================
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Time-stamp: <15 Apr 11 16:37:12 Jean-Guillaume.Dumas@imag.fr>
// Author: J-G. Dumas
// Description: Storjohann's high-order lifting
// Reference: A. Storjohann. High-order lifting. ISSAC 2002.
// ===============================================================
#ifndef __GIVARO_highorder_H
#define __GIVARO_highorder_H
#ifndef _GIVARO_HIGHORDER_THRESHOLD
#define _GIVARO_HIGHORDER_THRESHOLD 30
#endif
#include <givaro/givpoly1.h>
#include <givaro/givfractiondomain.h>
#include <givaro/givtruncdomain.h>
#include <givaro/givpower.h>
#include <givaro/givquotientdomain.h>
namespace Givaro {
template<class Domain>
struct HighOrder {
// -- Self_t
typedef HighOrder<Domain> Self_t;
// -- Exported types
typedef FracDom< Poly1Dom<Domain,Dense> > Father_t;
typedef FracDom< Poly1Dom<Domain,Dense> > Frac_t;
typedef Poly1Dom<Domain,Dense> Ring_t;
typedef Poly1Dom<Domain,Dense> Poly_t;
typedef TruncDom<Domain> Trunc_t;
typedef typename Trunc_t::Element Truncated;
typedef typename Ring_t::Element Ring_E;
typedef typename Ring_t::Element Polynomial;
typedef Frac<Ring_E, Ring_E> Element;
typedef Frac<Ring_E, Ring_E> Rep;
typedef Domain Domain_t;
typedef typename Domain::Element Type_t;
const Poly_t _poldom;
const Domain& _dom;
const Trunc_t _truncdom;
const Poly_t& getpoldom() const { return _poldom; }
const Domain& getdomain() const { return _dom; }
const Trunc_t& gettruncdom() const { return _truncdom; }
HighOrder(const Domain& d, const Indeter& Z = Indeter() ) : _poldom(d, Z), _dom(_poldom.getdomain()), _truncdom(_poldom) {}
Polynomial& taylor(Polynomial& Tay, const Rep& Fra, Degree order) const {
Degree d; _poldom.degree(d,Fra._den);
Tay.resize((size_t)order.value()+1);
size_t i = 0;
for( ; (i<Fra._num.size()) && (order>=(long)i); ++i) {
_dom.assign(Tay[i],Fra._num[i]);
for(size_t j = 1; (j<Fra._den.size()) && (j<=i); ++j) {
_dom.maxpyin(Tay[i],Fra._den[j],Tay[i-j]);
}
_dom.divin(Tay[i], Fra._den.front());
}
for( ; (order>=(long)i); ++i) {
_dom.assign(Tay[i], _dom.zero);
for(size_t j = 1; (j<Fra._den.size()) && (j<=i); ++j) {
_dom.maxpyin(Tay[i],Fra._den[j],Tay[i-j]);
}
_dom.divin(Tay[i], Fra._den.front());
}
return _poldom.setdegree(Tay);
}
Truncated& Fiduccia(Truncated& F, const Rep& Fra, Degree a, Degree b) const {
Polynomial Tay;
Degree dA; _poldom.degree(dA, Fra._den);
this->taylor(Tay, Fra, dA);
return Fiduccia(F, Tay, Fra._den, a, b);
}
Truncated& Fiduccia(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree a, Degree b) const {
Degree dA; _poldom.degree(dA, FraDen);
Polynomial Rev; _poldom.init(Rev,dA);
for(int i=0;i<dA.value();++i)
_dom.div(Rev[(size_t)i],(FraDen)[(size_t)dA.value()-(size_t)i],FraDen.front());
_dom.assign(Rev[(size_t)dA.value()],_dom.one);
return FiducciaReversed(F, Tay, Rev, a, b);
}
Truncated& Fiduccia(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
return Fiduccia(F, Tay, FraDen, b, b);
}
Truncated& Fiduccia(Truncated& F, const Rep& Fra, Degree b) const {
return Fiduccia(F, Fra, b, b);
}
Type_t& shifteddotproduct(Type_t& dp, const Polynomial& P, const Polynomial& Q, const long shift) const {
Degree dl; _poldom.degree(dl, P);
GIVARO_STATE( Degree dq; _poldom.degree(dq, Q); );
GIVARO_ASSERT( (dl.value()+shift) <= (dq.value()+1), " in dotproduct HighOrder dP: " << dl << ", dQ: " << dq << ", shift: " << shift );
_dom.assign(dp,_dom.zero);
for(long i=0;i<=dl.value();++i)
_dom.axpyin(dp, P[(size_t)i], Q[(size_t)(i+shift)]);
return dp;
}
Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree a, Degree b) const {
Degree dT; _poldom.degree(dT, Tay);
// std::cout << "a: " << a << ", b: " << b << ", dT: " << dT << std::endl;
if (b > dT) {
Degree dA; _poldom.degree(dA, FraDen);
Polynomial Xl; _poldom.init(Xl);
Polynomial Xone; _poldom.init(Xone,Degree(1));
QuotientDom<Poly_t> Qdom(_poldom, FraDen);
Qdom.assign(Xone);
const long bonus = dT.value()-dA.value()+1;
Degree dR(b-a);
Polynomial Res; _poldom.init(Res, dR);
long iterT=a.value();
long iterR=0;
for( ; iterT < dT.value(); ++iterR,++iterT)
_dom.assign(Res[(size_t)iterR],Tay[(size_t)iterT]);
dom_power(Xl, Xone, iterT-bonus, Qdom);
Degree dl; _poldom.degree(dl, Xl);
shifteddotproduct( Res[(size_t)iterR], Xl, Tay, bonus);
for( ++iterR; iterR<=dR.value(); ++iterR) {
Qdom.mulin(Xl, Xone);
shifteddotproduct( Res[(size_t)iterR], Xl, Tay, bonus);
}
_truncdom.assign(F, Res);
return _truncdom.mulin(F, a);
} else {
return _truncdom.assign(F, Tay, Degree(a), Degree(b));
}
}
Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
return FiducciaReversed(F, Tay, FraDen, b, b);
}
// Truncated& FiducciaReversed(Truncated& F, const Polynomial& Tay, const Polynomial& FraDen, Degree b) const {
// Degree dT; _poldom.degree(dT, Tay);
// if (b > dT) {
// Degree dA; _poldom.degree(dA, FraDen);
// Polynomial Xl; _poldom.init(Xl);
// Polynomial Xone; _poldom.init(Xone,Degree(1));
// QuotientDom<Poly_t> Qdom(_poldom, FraDen);
// Qdom.assign(Xone);
// const long bonus = dT.value()-dA.value()+1;
// dom_power(Xl, Xone, b.value()-bonus, Qdom);
// Degree dl; _poldom.degree(dl, Xl);
// Type_t Tl; _dom.init(Tl);
// shifteddotproduct( Tl, Xl, Tay, bonus);
// return _truncdom.assign(F, Degree(b), Tl);
// } else {
// return _truncdom.assign(F, Degree(b), Tay[b.value()]);
// }
// }
Truncated& FracDevel(Truncated& F, const Rep& Fra, Degree a, Degree b) const {
// Precondition Degree(Fra._num)<Degree(Fra._den)
if (b < _GIVARO_HIGHORDER_THRESHOLD) {
Polynomial Tay;
this->taylor(Tay, Fra, b);
return _truncdom.assign(F, Tay, a, b);
} else {
std::vector<Truncated> Gam, T;
std::vector<Degree> Deg;
Polynomial Tay; Degree dT;
Degree dA; _poldom.degree(dA, Fra._den);
#ifdef GIVARO_HIGHORDER_TIMER
Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif
this->highorder(Gam, T, Deg, Tay, dT, a, b, Fra._den, dA);
#ifdef GIVARO_HIGHORDER_TIMER
GivHOTimer.stop();
std::cerr << "HighOrder_" << a << '^' << b << " : " << GivHOTimer << std::endl;
#endif
Truncated A, B;
_truncdom.assign(A, Fra._den);
_truncdom.assign(B, Fra._num);
return this->FracDevel(F, B, A, dA, a, b, Tay, dT, Gam, T, Deg);
}
}
Truncated& GammaId(Truncated& Gam, const Polynomial& Tay, const Degree dT, const Degree k0, const Polynomial& A, const Degree dA) const {
Truncated U0,TA,One;
_truncdom.assign(TA, A);
_truncdom.assign(One,_poldom.one );
_truncdom.assign(U0, Tay, k0-dA,k0-1);
_truncdom.maxpy(Gam, TA, U0, One, k0, k0+dA-1);
_truncdom.divin(Gam, k0);
return Gam;
}
Truncated& doubleorder(Truncated& Gam, Truncated& T, const Truncated& Gamp, const Truncated& Tp, const Truncated& S, const Truncated& TA, const Degree dA, const Degree ke) const {
// std::cerr << "Double order: " << ke << std::endl;
// ke = 2^e
Truncated AL;
_truncdom.mul(AL, Tp, Gamp, ke-dA, ke-1);
_truncdom.mulin(AL, ke-dA);
//write(std::cout << "AL" << ke.value() << ":=", AL) << ';' << std::endl;
_truncdom.mul(Gam, TA, AL, ke*2-dA, ke*2-1);
_truncdom.negin(Gam);
_truncdom.divin(Gam, ke*2-dA);
// _truncdom.setval(Gam);
// write(std::cout << "Gam" << (ke*2-dA) << ":=", Gam) << ';' << std::endl;
// std::cerr << "[G]_" << (ke*2-dA) << std::endl;
Truncated AH;
_truncdom.mul(AH, Gam, S, 0, dA-1);
_truncdom.mulin(AH,ke*2-dA);
//write(std::cout << "AH" << ke.value() << ":=", AH) << ';' << std::endl;
// Forget the last term
_truncdom.truncin(AL, ke*2-dA*2+1, ke*2-dA-1);
_truncdom.add(T, AL, AH);
// std::cerr << "[I]_" << (ke*2-dA*2+1) << '^' << (ke*2-1) << std::endl;
// write(std::cout << "T" << (ke*2-dA) << ":=", T) << ';' << std::endl;
return Gam;
}
std::vector<Truncated>& highorder(std::vector<Truncated>& Gam, std::vector<Truncated>& T, std::vector<Degree>& Deg, Polynomial& Tay, Degree& dT, Degree a, Degree order, const Polynomial& A, const Degree dA) const {
Gam.resize(0); T.resize(0); Deg.resize(0);
size_t e;
for(e=0; (1<<e)<dA.value(); ++e) {}
++e; // 2^{e-2} < d <= 2^{e-1}
int dt = int (1<<e);
Degree k0 = Degree(1<<e);
Deg.push_back(k0-dA);
Degree dif = order-a;
dt = int(dif.value()>dt? dif.value() : dt);
// std::cout << "BEG HighOrder" << std::endl;
// std::cout << "d: " << dA << std::endl;
// std::cout << "e: " << e << std::endl;
// std::cout << "k0: " << k0 << std::endl;
// std::cout << "k0-d: " << Deg.back() << std::endl;
// std::cout << "a: " << a << std::endl;
// std::cout << "b: " << order << std::endl;
// std::cout << "dif: " << dif << std::endl;
// std::cout << "dt: " << dt << std::endl;
Rep Fra; Fra._num=_poldom.one; Fra._den=A;
this->taylor(Tay, Fra, dt);
// std::cerr << "[I]_" << 0 << '^' << dt << std::endl;
// write(std::cout << "Tay" << dt << ":=", Tay) << ';' << std::endl;
dT = dt;
Truncated G0; this->GammaId(G0, Tay, dT, Deg.back(), A, dA);
Gam.push_back(G0);
// std::cerr << "[G]_" << Deg.back() << std::endl;
// write(std::cout << "Gam" << Deg.back() << ":=", G0) << ';' << std::endl;
Truncated S; _truncdom.assign(S, Tay, Degree(0), dA-1);
// write(std::cout << "S:=", S) << ';' << std::endl;
Truncated T0; _truncdom.assign(T0,Tay, k0-dA*2+1,k0-1);
T.push_back(T0);
// write(std::cout << "T" << e << ":=", T0) << ';' << std::endl;
Truncated TA; _truncdom.assign(TA, A);
size_t ordero2 = (size_t)order.value()/2;
for( ; k0<(long)ordero2; ) {
#ifdef GIVARO_HIGHORDER_TIMER
Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif
doubleorder(G0, T0, Gam.back(), T.back(), S, TA, dA, k0);
Gam.push_back(G0);
T.push_back(T0);
k0*=2; Deg.push_back(k0-dA);
#ifdef GIVARO_HIGHORDER_TIMER
GivHOTimer.stop();
std::cerr << "DoubleOrder[" << dA << "]^" << k0 << " out of " << ordero2 << " : " << GivHOTimer << std::endl;
#endif
}
return Gam;
}
Truncated& Betta(Truncated& B, const Truncated& TB, const Truncated& TA, const Degree dA, const Degree a, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// this->write(std::cerr << "BEG Betta" << a << "TB: [", TB) << "]_" << a << std::endl;
#ifdef GIVARO_HIGHORDER_TIMER
Timer GivHOTimer; GivHOTimer.clear(); GivHOTimer.start();
#endif
Degree a0=dA*2-1;
a0 = (a0>a? 0 : a-a0);
Truncated S;
this->Inverse(S, a0, a-1, TA, dA, Tay, dT, Gam, T, Deg);
Truncated U;
_truncdom.mul(U, S, TB, a-dA, a-1);
// _truncdom.setval(U);
_truncdom.maxpy(B, TA, U, TB, a, a+dA-1);
// this->write(std::cerr << "END Betta" << a << " B: [", B) << "]/" << a << std::endl;
#ifdef GIVARO_HIGHORDER_TIMER
GivHOTimer.stop();
std::cerr << "Betta[" << dA << "]_" << a << " : " << GivHOTimer << std::endl;
#endif
return _truncdom.divin(B, a);
}
Truncated& FracDevel(Truncated& F, const Truncated& TB, const Truncated& TA, const Degree dA, const Degree a, const Degree b, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// this->write(this->write(std::cerr << "BEG FracDevel" << a << '-' << b << ": [", TB) << " x ", TA)<< "]_" << a << '^' << b << std::endl;
if (b <= dT) {
Truncated tTay; _truncdom.assign(tTay, Tay, a-dA-1, b);
// this->write(std::cerr << "END FracDevel" << a << '-' << b << " b<" << dT << ": ", _truncdom.mul(F, TB, tTay, a, b)) << std::endl;
return _truncdom.mul(F, TB, tTay, a, b);
} else if (a == 0) {
std::cerr << "ERROR: This should not happen" << std::endl;
std::cerr <<"[FracDevel" << a << '-' << b << "]_0^" << b.value() << " with degree(taylor)=" << dT << std::endl;
return _truncdom.assign(F,_poldom.zero );
} else {
Truncated Beta;
this->Betta(Beta, TB, TA, dA, a, Tay, dT, Gam, T, Deg);
// _truncdom.setval(Beta);
// this->FracDevel(F, Beta, TA, dA, Degree(0), b-a, Tay, dT, Gam, T, Deg);
Truncated tTay; _truncdom.assign(tTay, Tay, 0, b-a);
_truncdom.mul(F, Beta, tTay, 0, b-a);
// _truncdom.setval(F);
// this->write(std::cerr << "END FracDevel" << a << '-' << b << " : [", F) << "]/" << a << std::endl;
return _truncdom.mulin(F,a);
}
}
Truncated& Inverse(Truncated& I, const Degree a, const Degree b, const Truncated& TA, const Degree dA, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// std::cerr << "[I]_" << a << '^' << b << std::endl;
// this->write(std::cerr << "BEG Inverse" << a << '-' << b << ": [", TA) << "]_" << a << '^' << b << std::endl;
if (b <= dT) {
// this->write(std::cerr << "END Inverse" << a << '-' << b << " b<" << dT << ": ", _truncdom.assign(I, Tay, a, b) ) << std::endl;
return _truncdom.assign(I, Tay, a, b);
} else {
Truncated Gama;
this->Gamma(Gama, a, TA, dA, Tay, dT, Gam, T, Deg);
// _truncdom.setval(Gama);
// this->FracDevel(I, Gama, TA, dA, Degree(0), b-a, Tay, dT, Gam, T, Deg);
Truncated tTay; _truncdom.assign(tTay, Tay, 0, b-a);
_truncdom.mul(I, Gama, tTay, 0, b-a);
// _truncdom.setval(I);
// this->write(std::cerr << "END Inverse" << a << '-' << b << ": [", I ) << "]*" << a << std::endl;
return _truncdom.mulin(I, a);
}
}
Truncated& Gamma(Truncated& G, const Degree a, const Truncated& TA, const Degree dA, const Polynomial& Tay, const Degree dT, const std::vector<Truncated>& Gam, const std::vector<Truncated>& T, const std::vector<Degree>& Deg) const {
// std::cerr << "[G]_" << a << std::endl;
// this->write(std::cerr << "BEG Gamma" << a << ": [", TA) << "]_" << a << std::endl;
// if ((a+dA)>dT) {
if (a>dT) {
size_t i=0;
for( ; i<Deg.size(); ++i) {
if (Deg[i] > a) { --i; break; }
}
if (i>=Deg.size()) --i;
this->Betta(G, Gam[i], TA, dA, a-Deg[i], Tay, dT, Gam, T, Deg);
// this->write(std::cerr << "END Gamma" << a << " B: [", G) << "]" << std::endl;
return _truncdom.setval(G);
} else if (a == 0) {
// this->write(std::cerr << "END Gamma" << a << " O: ", _truncdom.one) << std::endl;
return _truncdom.assign(G, _truncdom.one);
} else {
Truncated One; _truncdom.assign(One,_poldom.one );
Truncated tTay; _truncdom.assign(tTay, Tay, 0, a-1);
_truncdom.maxpy(G, TA, tTay, One,a,a+dA-1);
// this->write(std::cerr << "END Gamma" << a << " D: [", G) << "]/" << a << std::endl;
return _truncdom.divin(G, a);
}
}
std::ostream& write( std::ostream& o) const {
return _truncdom.write(o << "HighOrder<") << '>';
}
std::ostream& write( std::ostream& o, const Truncated& n) const {
return _truncdom.write(o, n);
}
std::ostream& write( std::ostream& o, const Polynomial& n) const {
return _poldom.write(o, n);
}
std::ostream& write( std::ostream& o, const Rep& n) const {
return _poldom.write(_poldom.write(o << '(',n._num) << ")/(", n._den) << ')';
}
};
} // Givaro
#endif
|