/usr/include/givaro/givinterpgeom-multip.h is in libgivaro-dev 4.0.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | // ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givinterp.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: JG Dumas
// $Id: givinterp.h,v 1.3 2011-02-02 16:23:56 briceboyer Exp $
// ==========================================================================
/** @file givinterpgeom-multip.h
* @ingroup poly1
* @brief Interpolation at geometric points
* @bib
* - A Bostan and E Schost, <i>Polynomial evaluation and interpolation on special sets of points</i>,
* Journal of Complexity 21(4): 420-446, 2005.
*/
#ifndef __GIVARO_multiple_interpolation_at_geometric_points_H
#define __GIVARO_multiple_interpolation_at_geometric_points_H
#include "givaro/givconfig.h"
#include "givaro/giverror.h"
#include "givaro/givpoly1.h"
#include <givaro/givtruncdomain.h>
#include <vector>
namespace Givaro {
//! Newton (multip)
template<class Domain, bool REDUCE = true>
struct NewtonInterpGeomMultip : TruncDom<Domain> {
typedef std::vector< typename Domain::Element > Vect_t;
typedef typename TruncDom<Domain>::Polynomial_t Polynomial;
typedef Polynomial Element;
typedef typename TruncDom<Domain>::Element Truncated;
typedef typename TruncDom<Domain>::Type_t Type_t;
typedef typename std::vector< Polynomial > VectPoly_t;
private:
Type_t _q;
Type_t powerq;
Type_t _ui;
Polynomial _qi;
Polynomial _mui;
VectPoly_t _wi;
Polynomial _g2;
bool flip;
Degree _deg;
public:
// Usage :
// Cstor + initialize with first evaluation (at 1)
// Then calls to operator(), will evaluate the blackbox at q^i
// Finally calls to Newton would yield the coefficients in the Newton basis
// While interpolator calls Newton, and then transforms to monomial basis
NewtonInterpGeomMultip (const Domain& d, const Indeter& X = Indeter() ) : TruncDom<Domain>(d,X), powerq(d.one), _ui(d.one), flip(false), _deg(0) {
d.generator(_q); // get a primitive root
}
template<typename BlackBox>
void initialize (const BlackBox& bb) {
_qi.resize(0);
_mui.resize(0);
_wi.resize(0);
_g2.resize(0);
this->_domain.assign(powerq, this->_domain.one);
this->_domain.assign(_ui, this->_domain.one);
_deg = 0;
_qi.push_back(this->_domain.one);
_mui.push_back(this->_domain.one);
Vect_t v0;
bb(v0, this->_domain.one);
_wi.resize(v0.size());
typename Vect_t::const_iterator iter_v0 = v0.begin();
for(typename VectPoly_t::iterator iter_wi = _wi.begin();
iter_wi != _wi.end(); ++iter_wi, ++iter_v0)
iter_wi->push_back(*iter_v0);
_g2.push_back(this->_domain.one);
flip = true;
}
template<typename BlackBox>
void operator() (const BlackBox& bb) {
Type_t qi;
this->_domain.mul(qi, _qi.back(), powerq);
_qi.push_back(qi);
this->_domain.mulin(powerq, _q);
Type_t ui, mui;
this->_domain.sub(ui, powerq, this->_domain.one);
this->_domain.mul(mui, powerq, _mui.back() );
this->_domain.divin(mui, ui );
this->_domain.negin(mui);
_mui.push_back(mui);
this->_domain.mulin(_ui, ui );
Vect_t vi;
bb(vi, powerq);
typename Vect_t::iterator iter_vi = vi.begin();
typename VectPoly_t::iterator iter_wi = _wi.begin();
for( ; iter_vi != vi.end(); ++iter_vi, ++iter_wi) {
Type_t wi;
this->_domain.div(wi, *iter_vi, _ui);
iter_wi->push_back(wi);
}
Type_t gi;
this->_domain.div(gi, qi, _ui);
if (flip) this->_domain.negin(gi);
_g2.push_back(gi);
flip = !flip;
++_deg;
}
VectPoly_t& Newton(VectPoly_t& inter) {
this->getpoldomain().setdegree(_g2);
Truncated QU;
this->assign(QU,_g2); // truncated
inter.resize(_wi.size());
typename VectPoly_t::iterator iter_inter = inter.begin();
typename VectPoly_t::iterator iter_wi = _wi.begin();
for( ; iter_wi != _wi.end(); ++iter_wi, ++iter_inter) {
Truncated G,W;
this->getpoldomain().setdegree(*iter_wi);
this->assign(W, *iter_wi); // truncated
// truncated multiplication
this->mul(G, W, QU, 0, _deg);
this->convert(*iter_inter, G); // trunc to polynomial
for(size_t i=0; i<iter_inter->size(); ++i)
this->_domain.divin((*iter_inter)[i], _qi[i]);
}
return inter;
}
VectPoly_t& interpolator(VectPoly_t& inter) {
this->Newton(inter);
Polynomial _rev_mui;
this->getpoldomain().setdegree(_mui);
this->getpoldomain().reverse(_rev_mui, _mui);
Truncated U;
this->assign(U, _rev_mui); // truncated
typename VectPoly_t::iterator iter_inter = inter.begin();
for( ; iter_inter != inter.end(); ++iter_inter) {
Type_t mvi;
Polynomial mwi(_qi.size()), mzi(_qi.size());
for(size_t i=0; i<iter_inter->size(); ++i) {
this->_domain.mul(mvi, (*iter_inter)[i],_qi[i]);
if (i & 1) this->_domain.negin(mvi);
this->_domain.div(mwi[i], mvi, _mui[i]);
this->_domain.div(mzi[i], _mui[i], _qi[i]);
if (i & 1) this->_domain.negin(mzi[i]);
}
this->getpoldomain().setdegree( mwi);
Truncated G,W;
this->assign(W, mwi); // truncated
// Transposed multiplication (U has been reversed)
this->mul(G, U, W, _deg, _deg * 2);
this->divin(G,_deg);
this->convert(*iter_inter, G); // trunc to polynomial
for(size_t i=0; i<iter_inter->size(); ++i)
this->_domain.mulin( (*iter_inter)[i], mzi[i]);
}
return inter;
}
};
} // Givaro
#endif // __GIVARO_multiple_interpolation_at_geometric_points_H
|