This file is indexed.

/usr/include/givaro/givinterpgeom.h is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givinterp.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: JG Dumas
// $Id: givinterp.h,v 1.3 2011-02-02 16:23:56 briceboyer Exp $
// ==========================================================================

/** @file givinterpgeom.h
 * @ingroup poly1
 * @brief  Interpolation at geometric points
 * @bib
 * - A Bostan and E Schost, <i> Polynomial evaluation and interpolation on special sets of points</i>,
 *  Journal of Complexity 21(4): 420-446, 2005.
 */

#ifndef __GIVARO_interpolation_at_geometric_points_H
#define __GIVARO_interpolation_at_geometric_points_H

#include "givaro/givconfig.h"
#include "givaro/giverror.h"
#include "givaro/givpoly1.h"
#include <givaro/givtruncdomain.h>

namespace Givaro {

	//! Newton
template<class Domain, bool REDUCE = true>
struct NewtonInterpGeom : TruncDom<Domain>  {
    typedef std::vector< typename Domain::Element > Vect_t;
    typedef typename TruncDom<Domain>::Polynomial_t Polynomial;
    typedef Polynomial Element;
    typedef typename TruncDom<Domain>::Element Truncated;
    typedef typename TruncDom<Domain>::Type_t Type_t;

private:
    Type_t _q;
    Type_t powerq;
    Type_t _ui;
    Polynomial _qi;
    Polynomial _mui;
    Polynomial _wi;
    Polynomial _g2;
    bool flip;
    Degree _deg;

public:
        // Usage :
        // Cstor + initialize with first evaluation (at 1)
        // Then calls to operator(), will evaluate the blackbox at q^i
        // Finally calls to Newton would yield the coefficients in the Newton basis
        // While interpolator calls Newton, and then transforms to monomial basis

    NewtonInterpGeom (const Domain& d, const Indeter& X = Indeter() ) : TruncDom<Domain>(d,X), powerq(d.one), _ui(d.one), flip(false), _deg(0) {
        d.generator(_q); // get a primitive root
    }

    template<typename BlackBox>
    void initialize (const BlackBox& bb) {
        _qi.resize(0);
        _mui.resize(0);
        _wi.resize(0);
        _g2.resize(0);
        this->_domain.assign(powerq, this->_domain.one);
        this->_domain.assign(_ui, this->_domain.one);
        _deg = 0;
        _qi.push_back(this->_domain.one);
        _mui.push_back(this->_domain.one);
        Type_t v0;
        bb(v0, this->_domain.one);
        _wi.push_back(v0);
        _g2.push_back(this->_domain.one);
        flip = true;
    }

    template<typename BlackBox>
    void operator() (const BlackBox& bb) {
        Type_t qi;
        this->_domain.mul(qi, _qi.back(), powerq);
        _qi.push_back(qi);

        this->_domain.mulin(powerq, _q);

        Type_t ui, mui;
        this->_domain.sub(ui, powerq, this->_domain.one);

        this->_domain.mul(mui, powerq, _mui.back() );
        this->_domain.divin(mui, ui );
        this->_domain.negin(mui);
        _mui.push_back(mui);

        this->_domain.mulin(_ui, ui );

        Type_t vi;
        bb(vi, powerq);

        Type_t wi;
        this->_domain.div(wi, vi, _ui);
        _wi.push_back(wi);

        Type_t gi;
        this->_domain.div(gi, qi, _ui);
        if (flip) this->_domain.negin(gi);
        _g2.push_back(gi);

        flip = !flip;
        ++_deg;
    }



    Polynomial& Newton(Polynomial& inter) {
        this->getpoldomain().setdegree(_wi);
        this->getpoldomain().setdegree(_g2);

        Truncated G,W,QU;
        this->assign(W, _wi); // truncated
        this->assign(QU,_g2); // truncated

            // truncated multiplication
        this->mul(G, W, QU, 0, _deg);

        this->convert(inter, G); // trunc to polynomial

        for(size_t i=0; i<inter.size(); ++i)
            this->_domain.divin(inter[i], _qi[i]);

        return inter;
    }


    Polynomial& interpolator(Polynomial& inter) {
        this->Newton(inter);

        Type_t mvi;
        Polynomial mwi(_qi.size()), mzi(_qi.size());
        for(size_t i=0; i<inter.size(); ++i) {
            this->_domain.mul(mvi,inter[i],_qi[i]);
            if (i & 1) this->_domain.negin(mvi);
            this->_domain.div(mwi[i], mvi, _mui[i]);
            this->_domain.div(mzi[i], _mui[i], _qi[i]);
            if (i & 1) this->_domain.negin(mzi[i]);
        }

        this->getpoldomain().setdegree(_mui);
        this->getpoldomain().setdegree( mwi);

        this->getpoldomain().reversein(_mui);

        Truncated G,U,W;
        this->assign(U, _mui); // truncated
        this->assign(W, mwi); // truncated

            // Transposed multiplication (U has been reversed)
        this->mul(G, U, W, _deg, _deg * 2);
        this->divin(G,_deg);

        this->convert(inter, G); // trunc to polynomial

        for(size_t i=0; i<inter.size(); ++i)
            this->_domain.mulin(inter[i], mzi[i]);

        return inter;
    }

};

} // Givaro


#endif // __GIVARO_interpolation_at_geometric_points_H