/usr/include/givaro/givintnumtheo.inl is in libgivaro-dev 4.0.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 | // =================================================================== //
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Givaro : Euler's phi function
// Primitive roots.
// Needs list structures : stl ones for instance
// Time-stamp: <23 Jun 09 19:26:23 Jean-Guillaume.Dumas@imag.fr>
// =================================================================== //
#ifndef __GIVARO_numtheo_INL
#define __GIVARO_numtheo_INL
#include "givaro/givintnumtheo.h"
#include <list>
#include <vector>
#include "givaro/givintrns.h"
#include "givaro/givpower.h"
#ifndef GIVABSDIFF
#define GIVABSDIFF(a,b) ((a)<(b)?((b)-(a)):((a)-(b)))
#endif
#include <cmath>
namespace Givaro {
// =================================================================== //
// Euler's phi function
// =================================================================== //
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::phi(Rep& res, const Rep& n) const
{
if (Rep::isleq(n,1)) return res=n;
if (Rep::isleq(n,3)) return Rep::sub(res,n,this->one);
std::list<Rep> Lf;
Father_t::set(Lf,n);
//return phi (res,Lf,n);
return phi (res,Lf,n);
}
template<class MyRandIter>
template< template<class, class> class Container, template<class> class Alloc>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::phi(Rep& res, const Container<Rep, Alloc<Rep> >& Lf, const Rep& n) const
{
if (Rep::isleq(n,1)) return res=n;
if (Rep::isleq(n,3)) return Rep::sub(res,n,this->one);
res = n; Rep t,m;
for(typename Container<Rep, Alloc<Rep> >::const_iterator f=Lf.begin(); f!=Lf.end(); ++f)
Rep::mul(res, Rep::divexact(t,res,*f), Rep::sub(m, *f, this->one));
return res;
}
// =================================================================== //
// Möbius function
// =================================================================== //
//#ifndef __ECC
template<class MyRandIter>
template< template<class, class> class Container, template <class> class Alloc>
//short IntNumTheoDom<MyRandIter>::mobius(const Container<uint64_t, Alloc<uint64_t> >& lpow) const
//#else
//template<class MyRandIter>
//template<template <class, class> class Container, template <class> class Alloc>
short IntNumTheoDom<MyRandIter>::mobius(const Container<Rep, Alloc<Rep> >& lpow) const
{
//#endif
if (lpow.size()) {
short mob = 1;
for(typename Container<Rep, Alloc<Rep> >::const_iterator i=lpow.begin();i != lpow.end(); ++i) {
if (*i > 1) {
return 0;
} else
mob = -mob;
}
return mob;
} else
return 1;
}
template<class MyRandIter>
short IntNumTheoDom<MyRandIter>::mobius(const Rep& a) const
{
std::list< Rep> lr;
std::list<uint64_t> lp;
Father_t::set(lr, lp, a);
return mobius(lp);
}
// =================================================================== //
// Primitive Root
// =================================================================== //
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_root(Rep& A, uint64_t& runs, const Rep& n) const
{
// n must be in {2,4,p^m,2p^m} where p is an odd prime
// else infinite loop
if (Rep::isleq(n,4))
return this->sub(A,n,this->one);
if (this->isZero(this->mod(A,n,4)))
return A=this->zero;
Rep p,ismod2, q, no2, root;
if (isZero(this->mod(ismod2,n,2)))
this->divexact(no2,n,2);
else
no2=n;
p=no2;
int k = 1;
while (! this->isprime(p) ) {
sqrt(root, p);
while (this->mul(q,root,root) == p) {
p = root;
sqrt(root,p);
}
if (! this->isprime(p) ) {
q=p;
while( p == q )
this->factor(p, q);
this->divin(q,p);
if (q < p) p = q;
}
}
if (isZero(ismod2))
this->mul(q,p,2);
else
q=p;
for(;q != n;++k,q*=p) ;
Rep phin, tmp;
phi(phin,p);
std::list<Rep> Lf;
Father_t::set(Lf,phin);
typename std::list<Rep>::iterator f;
for(f=Lf.begin();f!=Lf.end();++f)
this->div(*f,phin,*f);
int found; runs = 0;
A=2;
found = (int) ++runs;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,p)) );
if (! found) {
A=3;
found = (int) ++runs;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,p)) );
}
if (! found) {
A=5;
found = (int) ++runs;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,p)) );
}
if (! found) {
A=6;
found = (int) ++runs;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,p)) );
}
while (! found) {
do {
this->random(this->_g, A, p);
this->addin( this->modin(A,this->sub(tmp,p,7)) , 7);
} while ( ! isOne(gcd(tmp,A,p)) );
found = (int) ++runs;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,p)) );
}
if (k == 1) {
if (isZero(ismod2) && isZero(this->mod(ismod2, A, 2)))
return A+=p;
else
return A;
} else {
if (! is_prim_root(A,no2))
A+=p;
if (isZero(ismod2) && isZero(this->mod(ismod2, A, 2)))
return A+=no2;
else
return A;
}
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_root(Rep& A, const Rep& n) const
{ uint64_t runs; return prim_root(A, runs, n); }
/*
template<class T, template <class, class> class Container, template<class> class Alloc>
std::ostream& operator<< (std::ostream& o, const Container<T, Alloc<T> >& C) {
for(typename Container<T, Alloc<T> >::const_iterator refs = C.begin();
refs != C.end() ;
++refs )
o << (*refs) << " " ;
return o << std::endl;
}
*/
// =================================
// Probable primitive roots
//
// Polynomial-time generation of primitive roots
// L is number of loops of Pollard partial factorization of n-1
// 10,000,000 gives at least 1-2^{-40} probability of success
// [Dubrois & Dumas, Industrial-strength primitive roots]
// Returns the probable primitive root and the probability of error.
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::probable_prim_root(Rep& primroot, double& error, const Rep& p, const uint64_t L) const
{
// std::cerr << "L: " << L << std::endl;
// partial factorisation
std::vector<Rep> Lq;
std::vector<uint64_t> e;
Rep Q, pmun(p); --pmun;
primroot = 1;
bool complet = Father_t::set(Lq, e, pmun, L);
// partial factorisation done
//std::cerr << "Lq: " << Lq << std::endl;
//std::cerr << "e: " << e << std::endl;
Rep Temp;
Rep essai, alea;
if (!complet) {
Q=Lq.back();
Lq.pop_back();
this->div(Temp, pmun, Q);
do {
this->nonzerorandom(this->_g, alea, p);
this->modin(alea, p);
this->powmod(essai, alea, Temp, p);
//std::cerr << alea << " should be of order " << Q << " mod " << p << std::endl;
} while (essai == 1);
// looking for alea, of order Q with high probability
this->mulin(primroot, essai);
// 1-(1+2/(p-1))*(1-1/L^2)^log_B(Q) < 1-(1+2^(-log_2(p)))*(1-1/L^2)^log_B(Q);
essai = L;
this->mul(Temp, essai, L);
error = 1-1.0/(double)Temp;
error = power(error, logp(Q,Temp) );
error *= (1.0+1.0/((double)Q-1.0));
error = 1-error;
} else
error = 0.0;
typename std::vector<Rep>::const_iterator Lqi = Lq.begin();
typename std::vector<uint64_t>::const_iterator ei = e.begin();
for ( ; Lqi != Lq.end(); ++Lqi, ++ei) {
this->div(Temp, pmun, *Lqi);
do {
this->nonzerorandom(this->_g, alea, p);
this->modin(alea, p);
this->powmod(essai, alea, Temp, p);
//std::cerr << alea << " should be of order at least " << *Lqi << "^" << *ei << "==" << power(*Lqi,*ei) << " mod " << p << std::endl;
} while( essai == 1 ) ;
// looking for alea with order Lq[i]^e[i]
//std::cerr << alea << " is of order at least " << (*Lqi) << "^" << (*ei) << "==" << power(*Lqi,*ei) << " mod " << p << std::endl;
this->divin(Temp, power(*Lqi,*ei-1));
this->mulin(primroot, this->powmod(essai, alea, Temp, p));
}
this->modin(primroot, p);
return primroot;
// return primroot with high probability
}
// Here L is computed so that the error is close to epsilon
// Newton-Raphson iteration is used for
// 1-epsilon = (1+2/(p-1))*(1-1/B)^(ln( (p-1)/2 )/ln(B))
// see [Dubrois & Dumas]
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::probable_prim_root(Rep& primroot, double& error, const Rep& p, const double epsilon) const
{
uint64_t L;
double t1, t4, t5, t6, t7, t8, t10, t11, t17, t20, t23, t32(1.0/epsilon), B(1.0);
t1 = (double)p-1.0; // p-1
t4 = 1.0+2.0/t1; // 1+2/(p-1)
t7 = log(t1/2.0); // log( (p-1)/2 )
do {
B = t32;
t5 = 1/B; // 1/B
t6 = 1.0-t5; // 1-1/B
t8 = log(B); // log(B)
t10 = t7/t8; // log_B( (p-1)/2 )
t11 = ::pow(t6,t10); // (1-1/B)^log_B( (p-1)/2 )
t17 = t8*t8; // log^2(B)
t20 = log(t6); // log(1-1/B)
t23 = B*B; // B^2
// B-F(B)/diff(F(B),B)
t32 = B-(t4*t11-1.0+epsilon)/t4/t11/(-t7/t17*t5*t20+t10/t23/t6);
} while( (GIVABSDIFF(t32,B) > 0.5) && (B<1.8e+19) && ((1.0-t4*t11) > epsilon ) );
// std::cerr << "t32: " << t32 << std::endl;
if (B<1.8e+19)
L = (uint64_t)::sqrt(t32);
else
L = 0; // TOO small a precision, turning to deterministic process
return probable_prim_root(primroot, error, p, L);
}
// =================================
// Specializations for prime numbers
// =================================
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_root_of_prime(Rep& A, const Rep& n) const
{
std::vector<Rep> Lf;
Rep phin;
this->sub(phin,n,this->one);
Father_t::set(Lf,phin);
return prim_root_of_prime(A, Lf, phin, n);
}
inline Integer& ppin(Integer& res, const Integer& prime) {
IntegerDom I;
Integer tmp;
while( I.isZero(I.mod(tmp, res, prime)) ) {
I.divexact(res, tmp = res, prime);
}
return res;
}
/// Add Jacobi for quadratic nonresidue
template<class MyRandIter>
template<class Array>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_root_of_prime(Rep& A, const Array& aLf, const Rep& phin, const Rep& n) const
{
Rep tmp, expo, temp;
A = this->one;
Rep prime(2), Aorder=this->one;
std::vector<Rep> Lf = aLf, newLf, oldLf;
newLf.reserve(Lf.size());
oldLf.reserve(Lf.size());
Rep primeorder;
for(bool exemp = true; exemp; this->nextprimein(prime) ) {
A = prime;
primeorder = phin;
for(typename Array::const_iterator f = Lf.begin(); f != Lf.end(); ++f) {
this->powmod(tmp, prime, this->div(expo, primeorder, *f), n);
if (isOne(tmp)) {
newLf.push_back(*f);
while (isZero(this->mod(tmp,expo,*f)) &&
isOne( this->powmod(tmp, prime, this->div(temp, expo, *f), n) ) ) {
expo = temp;
}
primeorder = expo;
// std::cerr << "2 Order (Div): " << primeorder << std::endl;
}
else {
oldLf.push_back(*f);
exemp = false;
// std::cerr << "2 Order : " << primeorder << std::endl;
}
}
}
Aorder = primeorder;
Lf = newLf;
// Now we have A with order > 1, we need to add other primes
// std::cerr << "Prime : 2" << std::endl;
// std::cerr << "Root : " << A << std::endl;
// std::cerr << "Order : " << Aorder << std::endl;
for ( ; this->islt(Aorder,phin); this->nextprimein(prime) ) {
newLf.resize(0); oldLf.resize(0);
for(typename Array::const_iterator f = Lf.begin(); f != Lf.end(); ++f) {
this->powmod(tmp, prime, this->div(expo, phin, *f), n);
if (isOne(tmp)) {
newLf.push_back(*f);
} else {
oldLf.push_back(*f);
}
}
if (oldLf.size() > 0) {
Rep g = phin;
for(typename Array::const_iterator f = oldLf.begin(); f != oldLf.end(); ++f) {
ppin(g, *f);
ppin(Aorder, *f);
}
this->powmod(tmp, prime, g, n);
this->modin( this->mulin(A, tmp), n );
this->mulin(Aorder, this->div(tmp, phin, g));
Lf = newLf;
}
// std::cerr << "Prime : " << prime << std::endl;
// std::cerr << "Root : " << A << std::endl;
// std::cerr << "Order : " << Aorder << std::endl;
}
return A;
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lowest_prim_root(Rep& A, const Rep& n) const
{
// n must be in {2,4,p^m,2p^m} where p is an odd prime
// else returns zero
if (Rep::isleq(n,4)) return Rep::sub(A,n,this->one);
if (isZero(Rep::mod(A,n,4))) return A=this->zero;
Rep phin, tmp;
phi(phin,n);
std::list<Rep> Lf;
Father_t::set(Lf,phin);
typename std::list<Rep>::iterator f;
for(f=Lf.begin();f!=Lf.end();++f)
this->div(*f,phin,*f);
int found=0;
for(A = 2;(Rep::isleq(A,n) && (! found)); Rep::addin(A,1)) {
if (isOne(gcd(tmp,A,n))) {
found = 1;
for(f=Lf.begin();(f!=Lf.end() && found);f++)
found = (! isOne( this->powmod(tmp,A,*f,n)) );
}
}
if (Rep::isleq(A,n))
return Rep::subin(A,1);
else
return A=this->zero;
}
template<class MyRandIter>
bool IntNumTheoDom<MyRandIter>::is_prim_root(const Rep& p, const Rep& n) const
{
// returns 0 if failed
bool found=false;
Rep phin, tmp;
phi(phin,n);
std::list<Rep> Lf;
Father_t::set(Lf,phin);
typename std::list<Rep>::iterator f=Lf.begin();
Rep A;
this->mod(A,p,n);
if (isOne(gcd(tmp,A,n))) {
found = true;
for(;(f!=Lf.end() && found);f++) {
// found = ( this->powmod(A,phin / (*f),n) != 1);
found = (! isOne( this->powmod(tmp,A, this->div(tmp,phin,*f),n)) );
}
}
return found;
}
template<class MyRandIter>
bool IntNumTheoDom<MyRandIter>::isorder(const Rep& g, const Rep& p, const Rep& n) const
{
// returns 1 if p is of order g in Z/nZ
Rep tmp;
return (this->isOne( this->powmod(tmp, p, g, n) ) && this->areEqual( g, order(tmp,p,n) ) );
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::order(Rep& g, const Rep& p, const Rep& n) const
{
// returns 0 if failed
Rep A;
this->mod(A,p,n);
if (isZero(A))
return g = this->zero;
if (isOne(A))
return g = this->one;
bool noprimroot=false;
Rep phin,gg,tmp;
phi(phin,n);
std::list<Rep> Lf;
Father_t::set(Lf,phin);
Lf.sort();
typename std::list<Rep>::iterator f=Lf.begin();
if (isOne(gcd(tmp,A,n))) {
noprimroot = false;
for(;f!=Lf.end();++f)
if ( (noprimroot = isOne( this->powmod(tmp,A, this->div(g,phin,*f),n)) ) )
break;
if (noprimroot) {
for(;f!=Lf.end();++f)
while (isZero(this->mod(tmp,g,*f)) && isOne( this->powmod(tmp,A, this->div(gg,g,*f),n) ) )
g = gg;
return g;
} else
return g=phin;
}
return g=this->zero;
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_inv(Rep& A, const Rep& n) const
{
if (Rep::isleq(n,4)) return sub(A,n,this->one);
if (areEqual(n,8)) return init(A,3);
return prim_base(A, n);
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_elem(Rep& A, const Rep& n) const
{
if (Rep::isleq(n,4)) {
Rep tmp;
return this->sub(A,n,this->one);
}
if (this->areEqual(n,8))
return this->init(A,2);
return prim_base(A, n);
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::prim_base(Rep& A, const Rep& m) const
{
// Prerequisite : m > 4, and m != 8.
std::vector<Rep> Lp; std::vector<uint64_t> Le;
Father_t::set(Lp, Le, m);
uint64_t nbf = Lp.size();
std::vector<Rep> Pe(nbf);
std::vector<Rep> Ra(nbf);
typename std::vector<Rep>::const_iterator p=Lp.begin();
typename std::vector<uint64_t>::const_iterator e=Le.begin() ;
typename std::vector<Rep>::iterator pe = Pe.begin();
typename std::vector<Rep>::iterator a = Ra.begin() ;
for( ;p!=Lp.end();++p, ++e, ++pe, ++a) {
dom_power( *pe, *p, (long)*e, *this);
if (this->areEqual(*p,2))
this->init(*a, 3);
else
prim_root(*a, *pe);
}
IntRNSsystem<std::vector, std::allocator > RNs( Pe );
// IntRNSsystem<typename std::vector >, typename std::allocator > RNs( Pe );
RNs.RnsToRing( A, Ra );
return A;
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lambda_primpow(Rep & z, const Rep& p, const uint64_t e) const
{
// Prerequisite : p prime.
if (areEqual(p, 2)) {
if (e<=3) return init(z,e);
return dom_power(z, p, e-2, *this);
} else {
Rep tmp;
return mulin( dom_power(z, p, e-1, *this), sub(tmp, p, this->one) );
}
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lambda_inv_primpow(Rep & z, const Rep& p, const uint64_t e) const
{
// Prerequisite : p prime.
if (this->areEqual(p, 2)) {
if (e<=2)
return this->init(z,e);
if (e==3)
return this->init(z,2);
return dom_power(z, p, (long)e-2, *this);
}
else {
Rep tmp;
return this->mulin( dom_power(z, p, (long)e-1, *this),
this->sub(tmp, p, this->one) );
}
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lambda_inv(Rep & z, const Rep& m) const
{
if (this->areEqual(m,2))
return this->init(z,1);
if (this->areEqual(m,3) || this->areEqual(m,4) || this->areEqual(m,8) )
return this->init(z,2);
return lambda_base(z, m);
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lambda(Rep & z, const Rep& m) const
{
if (this->areEqual(m,2))
return this->init(z,1);
if (this->areEqual(m,3) || this->areEqual(m,4))
return this->init(z,2);
if (this->areEqual(m,8) )
return this->init(z,3);
return lambda_base(z, m);
}
template<class MyRandIter>
typename IntNumTheoDom<MyRandIter>::Rep& IntNumTheoDom<MyRandIter>::lambda_base(Rep & z, const Rep& m) const
{
// Prerequisite: m > 4, and m != 8.
std::vector<Rep> Lp; std::vector<uint64_t> Le;
Father_t::set(Lp, Le, m);
uint64_t nbf = Lp.size();
lambda_inv_primpow(z, Lp.front(), Le.front() );
if (nbf == 1) return z;
typename std::vector<Rep>::const_iterator p=Lp.begin();
typename std::vector<uint64_t>::const_iterator e=Le.begin() ;
for( ++p, ++e; p != Lp.end(); ++p, ++e) {
Rep tmp;
lambda_inv_primpow(tmp, *p, *e);
// Rep g;
// gcd(g, z, tmp);
// mulin(z, this->divin(tmp, g));
this->lcmin(z,tmp);
}
return z;
}
} // namespace Givaro {
#endif // __GIVARO_numtheo_INL
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|