/usr/include/givaro/givpoly1dense.h is in libgivaro-dev 4.0.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | // ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givpoly1dense.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: T. Gautier
// $Id: givpoly1dense.h,v 1.29 2011-02-02 16:23:56 briceboyer Exp $
// ==========================================================================
/** @file givpoly1dense.h
* @ingroup poly1
* @brief univariate polynomial over T.
* we assume that T is a ring (0,1,+,*)
*/
#ifndef __GIVARO_poly1_dense_H
#define __GIVARO_poly1_dense_H
#include <iostream>
#include "givaro/givdegree.h"
#include "givaro/givindeter.h"
#include "givaro/givinteger.h"
#include "givaro/givrandom.h"
#include "givaro/givindeter.h"
#ifndef __GIV_STANDARD_VECTOR
#include <vector>
#define __GIV_STANDARD_VECTOR std::vector
#endif
namespace Givaro {
//! givvector
template < typename T, typename A=std::allocator<T> >
class givvector : public __GIV_STANDARD_VECTOR<T,A> {
typedef givvector<T,A> Self_t;
public:
typedef typename __GIV_STANDARD_VECTOR<T,A>::const_iterator const_iterator ;
givvector() :
__GIV_STANDARD_VECTOR<T,A>()
{}
givvector(size_t s) :
__GIV_STANDARD_VECTOR<T,A>(s)
{ }
givvector(size_t s, const T& t) :
__GIV_STANDARD_VECTOR<T,A>(s,t)
{ }
givvector(const Self_t& p, givNoCopy xxx) :
__GIV_STANDARD_VECTOR<T,A>(p)
{}
givvector(const Self_t& p, givWithCopy xxx) :
__GIV_STANDARD_VECTOR<T,A>(p)
{}
template <class InputIterator>
givvector(InputIterator first, InputIterator last)
: __GIV_STANDARD_VECTOR<T,A>(first,last)
{}
Self_t& reallocate (size_t s)
{
this->resize(s);
return *this;
}
Self_t& logcopy(const Self_t& src)
{
return *this = src;
}
Self_t& copy(const Self_t& src)
{
return *this = src;
}
int areEqual(const Self_t& p) const
{
return *this == p;
}
int areNEqual(const Self_t& p) const
{
return *this != p;
}
template<typename _Tp1>
struct rebind {
typedef givvector<typename _Tp1::Element> other;
void operator() (other & P2,
const Self_t& P1,
const _Tp1& F)
{
typename Self_t::const_iterator it1 = P1.begin();
typename other::iterator it2 = P2.begin();
for (; it1 != P1.end(); ++it1, ++it2)
F.init (*it2, *it1);
}
};
template<typename _Elt1, typename _Alc1, typename Field>
givvector(const givvector<_Elt1, _Alc1>& V, const Field& F) :
__GIV_STANDARD_VECTOR<T,A>(V.size())
{
typename givvector<_Elt1, _Alc1>::template rebind<Field>() (*this, V, F);
}
//! @warning we have no field in Vectors so << is RAW.
friend std::ostream& operator<<(std::ostream& out, const Self_t& V) {
out << '[';
for(typename Self_t::const_iterator it=V.begin(); it!= V.end(); ++it)
out << *it << ' ';
return out << ']';
}
};
//! Class Poly1Dom
template <class Domain>
class Poly1Dom<Domain,Dense> {
protected: // -- Representation
Domain _domain; // -- subdomain
Indeter _x; // -- for I/O, if any
public :
// -- Exported types
typedef Domain Domain_t;
typedef typename Domain::Element Type_t;
// -- Self_t
typedef Poly1Dom<Domain,Dense> Self_t;
// -- The representation of a dense polynomial.
// assuming that we have correct operator, especially size, allocate
// , reallocate
// - zero is Rep.size() ==0 or Rep.size() =1 && Rep[0] ==0
// - Rep.size() is the degree + 1 if !=0
// typedef Array0<Type_t> Storage_t;
typedef givvector<Type_t> Storage_t;
typedef Storage_t Rep;
typedef const Storage_t constRep;
typedef Storage_t Element;
typedef GIV_randIter< Self_t, Element> RandIter;
Poly1Dom ()
{}
Poly1Dom (const Domain& d, const Indeter& X = Indeter() );
Poly1Dom (const Self_t&);
Type_t characteristic() const
{
return (Type_t)_domain.characteristic();
}
Integer& characteristic( Integer& p) const
{
return _domain.characteristic(p);
}
int operator==( const Poly1Dom<Domain,Dense>& BC) const
{
return _domain == BC._domain;
}
int operator!=( const Poly1Dom<Domain,Dense>& BC) const
{
return _domain != BC._domain;
}
const Indeter& getIndeter() const
{
return _x;
}
Indeter& setIndeter(const Indeter& X)
{
return _x=X;
}
// -- Return the domain of the entries
const Domain& subdomain() const
{
return _domain;
}
// -- Return the domain of the entries
const Domain& getdomain() const
{
return _domain;
}
Domain& setdomain(const Domain& D)
{
return _domain = D;
}
// -- Return the domain of the entries
const Domain& subDomain() const
{
return _domain;
}
// -- Return the domain of the entries
const Domain& getDomain() const
{
return _domain;
}
Domain& setDomain(const Domain& D)
{
return _domain = D;
}
// -- Constantes
Rep zero;
Rep one;
Rep mOne;
// -- Init polynomial
Rep& init(Rep& a) const;
// -- Init polynomial with value : F.init(p[0],cste)
template<class XXX>
Rep& init(Rep& p, const XXX &cste ) const;
// -- Allocate a polynomial with deg+1 coefficients, each of them are
// set to zero, except the leading coef which is set to one.
Rep& init (Rep& r, const Degree deg) const;
// -- For polynomial = lcoeff X^deg
template<class XXX>
Rep& init (Rep& p, const Degree deg , const XXX& lcoeff) const;
// F.assign(P[deg], lcoeff);
Rep& assign (Rep& p, const Degree deg , const Type_t& lcoeff) const;
// -- Assign polynomial with field value : F.assign(p[0],cste)
Rep& assign(Rep& p, const Type_t &cste ) const
{
return assign(p, Degree(0), cste);
}
// -- Assignment p = q
Rep& assign( Rep& p, const Rep& q) const;
// -- Polynomial to value : F.assign(cste, p[0])
Type_t& assign(Type_t&, const Rep &) const;
// -- Convert polynomials : F.convert(cste, p[0])
template<class XXX>
XXX& convert(XXX& p, const Rep &) const;
template<class UU, template<class XX> class Vect>
Vect<UU>& convert( Vect<UU>&, const Rep& P ) const ;
// -- Dstor
~Poly1Dom ();
// -- Comparaison operator
int isZero ( const Rep& P ) const;
#if 0
int isZero ( const Rep& P ) const
{
return iszero(P);
}
#endif
int isOne ( const Rep& P ) const;
int isMOne ( const Rep& P ) const;
int areEqual ( const Rep& P, const Rep& Q ) const;
int areNEqual( const Rep& P, const Rep& Q ) const;
// -- Returns the leading coefficients
Type_t& leadcoef(Type_t& c, const Rep& P) const;
// -- Returns the i-th coefficients
Type_t& getEntry(Type_t& c, const Degree& i, const Rep& P) const;
Type_t setEntry(Rep &P, const Type_t&c, const Degree&i) const;
// -- Returns the degree of polynomial
Degree& degree(Degree& d, const Rep& P) const;
Degree degree(const Rep& P) const;
// -- Returns the valuation of polynomial
Degree& val(Degree& d, const Rep& P) const;
/*! @brief Compute the degree of P.
* @warning this is an infamous function that may
* not leave \p P constant !!
* @param P polynomial
*/
Rep& setdegree( Rep& P ) const;
Rep& setDegree( Rep& P ) const { return setdegree(P); }
// -- Evaluation on one point.
Type_t& eval(Type_t& pval, const Rep& P, const Type_t& val) const;
// -- Returns the differentiate polynomial
Rep& diff( Rep& P, const Rep& Q) const;
// -- Computes the reverse polynomial
Rep& reverse( Rep&, const Rep&) const;
Rep& reversein( Rep&) const;
// --
std::istream& read ( std::istream& i );
std::ostream& write( std::ostream& o ) const;
std::istream& read ( std::istream& i, Rep& n) const;
std::ostream& write( std::ostream& o, const Rep& n) const;
// -- Arithmetics operators
Rep& addin ( Rep& res, const Rep& u ) const;
Rep& addin ( Rep& res, const Type_t& val ) const;
Rep& add ( Rep& res, const Rep& u, const Rep& v ) const;
Rep& add ( Rep& res, const Rep& u, const Type_t& val ) const;
Rep& add ( Rep& res, const Type_t& val, const Rep& v ) const;
Rep& subin ( Rep& res, const Rep& u ) const;
Rep& subin ( Rep& res, const Type_t& val ) const;
Rep& sub ( Rep& res, const Rep& u, const Rep& v ) const;
Rep& sub ( Rep& res, const Rep& u, const Type_t& val ) const;
Rep& sub ( Rep& res, const Type_t& val, const Rep& v ) const;
Rep& negin ( Rep& res ) const;
Rep& neg ( Rep& res, const Rep& u ) const;
Rep& mulin ( Rep& q, const Rep& a ) const;
Rep& mulin ( Rep& q, const Type_t& a ) const;
Rep& mul ( Rep& q, const Type_t& a, const Rep& b ) const;
Rep& mul ( Rep& q, const Rep& a, const Type_t& b ) const;
// generic mul with dynamic recursive choices between stdmul and karamul
Rep& mul ( Rep& q, const Rep& a, const Rep& b ) const;
// Forces standard multiplication algorithm
Rep& stdmul( Rep& R, const Rep& P, const Rep& Q) const;
// Forces first level of Karatsuba multiplication algorithm
Rep& karamul( Rep& R, const Rep& P, const Rep& Q) const;
// Compute truncated mul: only the coefficients inside
// the degree interval, included
Rep& mul( Rep&, const Rep&, const Rep&, const Degree&, const Degree&) const;
Rep& sqr ( Rep& q, const Rep& a ) const;
Rep& shiftin ( Rep&, int ) const;
Rep& shift ( Rep&, const Rep&, int ) const;
Rep& divin ( Rep& q, const Rep& a ) const;
Rep& divin ( Rep& q, const Type_t& a ) const;
Rep& div ( Rep& q, const Rep& a, const Rep& b ) const;
Rep& div ( Rep& q, const Type_t& a, const Rep& b ) const;
Rep& div ( Rep& q, const Rep& a, const Type_t& b ) const;
Rep& modin ( Rep& q, const Rep& a ) const;
Rep& modin ( Rep& q, const Type_t& a ) const;
Rep& mod ( Rep& q, const Rep& a, const Rep& b ) const;
Rep& mod ( Rep& q, const Type_t& a, const Rep& b ) const;
Rep& mod ( Rep& q, const Rep& a, const Type_t& b ) const;
Rep& axpy (Rep& r, const Rep& a, const Rep& x, const Rep& y) const;
Rep& axpy (Rep& r, const Type_t& a, const Rep& x, const Rep& y) const;
Rep& axpyin(Rep& r, const Rep& a, const Rep& x) const;
Rep& axpyin(Rep& r, const Type_t& a, const Rep& x) const;
// -- maxpy: r <- c - a * b
Rep& maxpy (Rep& r, const Rep& a, const Rep& b, const Rep& c) const;
Rep& maxpy (Rep& r, const Type_t& a, const Rep& b, const Rep& c) const;
// -- maxpyin: r -= a*b
Rep& maxpyin(Rep& r, const Rep& a, const Rep& b) const;
Rep& maxpyin(Rep& r, const Type_t& a, const Rep& b) const;
// -- axmy: r <- a * x - y
Rep& axmy (Rep& r, const Rep& a, const Rep& x, const Rep& y) const;
Rep& axmy (Rep& r, const Type_t& a, const Rep& x, const Rep& y) const;
// -- axmyin: r = a * x - r
Rep& axmyin (Rep& r, const Rep& a, const Rep& x) const;
Rep& axmyin (Rep& r, const Type_t& a, const Rep& x) const;
// A = q*B + r
Rep& divmod( Rep& q, Rep& r, const Rep& a, const Rep& b ) const;
// r <-- r - q*B ; d°(r) < d°(B)
Rep& divmodin( Rep& q, Rep& r, const Rep& b ) const;
// m*A = q*B + r
Rep& pdivmod( Rep& q, Rep& r, Type_t& m, const Rep& a, const Rep& b ) const;
Rep& pmod( Rep& r, Type_t& m, const Rep& a, const Rep& b ) const;
Rep& pmod( Rep& r, const Rep& a, const Rep& b ) const;
Rep& pdiv( Rep& q, Type_t& m, const Rep& a, const Rep& b ) const;
Rep& pdiv( Rep& q, const Rep& a, const Rep& b ) const;
// -- gcd D = gcd(P,Q) = P*U+Q*V;
// Rep& gcd ( Rep& D, const Rep& P, const Rep& Q) const;
Rep& gcd ( Rep& D, const Rep& P, const Rep& Q) const;
Rep& gcd ( Rep& D, Rep& U, Rep& V, const Rep& P, const Rep& Q) const;
Rep& lcm ( Rep& D, const Rep& P, const Rep& Q) const;
// -- modular inverse of P : U P = 1 + V Q
Rep& invmod ( Rep& U, const Rep& P, const Rep& Q) const;
// -- modular inverse of P : U P = e + V Q where e is of degree 0
Rep& invmodunit ( Rep& U, const Rep& P, const Rep& Q) const;
// -- rational reconstruction
// -- Builds N and D such that P * D = N mod M and degree(N) <= dk
void ratrecon(Rep& N, Rep& D, const Rep& P, const Rep& M, const Degree& dk) const;
// -- checks wether the reconstruction succeeded
bool ratreconcheck(Rep& N, Rep& D, const Rep& P, const Rep& M, const Degree& dk) const;
// -- misc
// -- W <-- P^n
Rep& pow( Rep& W, const Rep& P, uint64_t n) const;
// -- W <-- P^n [ U ]
Rep& powmod( Rep& W, const Rep& P, IntegerDom::Element pwr, const Rep& U) const;
template < class MyInt >
Rep& powmod( Rep& W, const Rep& P, MyInt pwr, const Rep& U) const
{
return powmod(W, P, (IntegerDom::Element)pwr, U);
}
// -- W <-- P(X^b)
Rep& power_compose( Rep& W, const Rep& P, uint64_t b) const;
// -- n th cyclotomic polynomial
Rep& cyclotomic( Rep& P, uint64_t n) const;
// -- Random generators
// -- Random dense polynomial of degree 0
template< class RandomIterator > Rep& random(RandomIterator& g, Rep& r) const;
// -- Random dense polynomial of size s
template< class RandomIterator > Rep& random(RandomIterator& g, Rep& r, uint64_t s) const ;
// -- Random dense polynomial of degree d
template< class RandomIterator > Rep& random(RandomIterator& g, Rep& r, Degree s) const ;
// -- Random dense polynomial with same size as b.
template< class RandomIterator > Rep& random(RandomIterator& g, Rep& r, const Rep& b) const;
template< class RandomIterator > Rep& nonzerorandom(RandomIterator& g, Rep& r) const;
template< class RandomIterator > Rep& nonzerorandom(RandomIterator& g, Rep& r, uint64_t s) const;
template< class RandomIterator > Rep& nonzerorandom(RandomIterator& g, Rep& r, Degree s) const ;
template< class RandomIterator > Rep& nonzerorandom(RandomIterator& g, Rep& r, const Rep& b) const;
// -- Square free decomposition
/** Sqrfree decomposition.
* Decompose P such that:
* P = Fact[0]^0 * Fact[1]^1 * ... * Fact[P.degree()]^(P.degree()),
* with Fact[0] the leading coefficient.
* The array Fact must be allocated before calling the function.
* The size of Fact must be degP+1 is all factors should be computed.
* For more readeable version of the algorithm, see Geddes, p342.
* @param Nfact [in] the size of Fact
* @param Fact [in] an array of dimension Nfact
@param Nfact [out] is the number of factor in the sqrfree decomposition
@param Fact [out] contains at most Nfact factors of the decomposition.
@param P rep.
*/
size_t& sqrfree(size_t& Nfact, Rep* Fact, const Rep& P) const;
protected:
typedef typename Rep::iterator RepIterator;
typedef typename Rep::const_iterator RepConstIterator;
// Mul only between iterator intervals
Rep& mul( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const;
Rep& stdmul( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const;
Rep& karamul( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const;
Rep& sqr( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const;
Rep& stdsqr( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Type_t& two) const;
Rep& sqrrec( Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
const Type_t& two) const;
// Sub only between iterator intervals
Rep& subin (Rep& R,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const;
Rep& subin (Rep& R, const RepIterator Rbeg,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const;
Rep& subin (Rep& R, const RepIterator Rbeg, const RepIterator Rend,
const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const;
}; // ------------------------------- End Of The Class Poly1Dom<Type_t>
} // Givaro
#endif // __GIVARO_poly1_dense_H
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
|