This file is indexed.

/usr/include/givaro/givpoly1kara.inl is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givpoly1kara.inl,v $
// Copyright(c)'1994-2011 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: J-G Dumas
// $Id: givpoly1kara.inl,v 1.3 2011-11-08 10:38:00 jgdumas Exp $
// ==========================================================================
#ifndef __GIVARO_poly1_kara_INL
#define __GIVARO_poly1_kara_INL

namespace Givaro {

#ifndef KARA_THRESHOLD
#define KARA_THRESHOLD 50
#endif

#ifndef SQR_THRESHOLD
#define SQR_THRESHOLD 50
#endif

#ifndef GIVMIN
#define GIVMIN(a,b) ((a)<(b)?(a):(b))
#endif

// forces standard multiplication
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdmul( Rep& R, const Rep& P, const Rep& Q ) const
{
	const size_t sP = P.size();
	const size_t sQ = Q.size();
	if ((sQ ==0) || (sP ==0)) { R.reallocate(0); return R; }
	const size_t sR = sP+sQ-1;
	if (sR != R.size() ) R.reallocate(sR);

 	stdmul(R, R.begin(), R.end(),
            P, P.begin(), P.end(),
            Q, Q.begin(), Q.end());

    return setdegree(R);
}

// forces FIRST recursive level with Karatsuba multiplication
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::karamul( Rep& R, const Rep& P, const Rep& Q ) const
{
	const size_t sP = P.size();
	const size_t sQ = Q.size();
	if ((sQ ==0) || (sP ==0)) { R.reallocate(0); return R; }
	const size_t sR = sP+sQ-1;
	if (sR != R.size()) R.reallocate(sR);

 	karamul(R, R.begin(), R.end(),
            P, P.begin(), P.end(),
            Q, Q.begin(), Q.end());

    return setdegree(R);
}

// Generic mul with choices between standard and Karatsuba multiplication
// Multiplies between the iterator bounds.
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::mul(
    Rep& R, const RepIterator Rbeg, const RepIterator Rend,
    const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
    const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const {

    if ( ( (Pend-Pbeg)> KARA_THRESHOLD ) &&
         ( (Qend-Qbeg)> KARA_THRESHOLD) )
        return karamul(R, Rbeg, Rend,
                       P, Pbeg, Pend,
                       Q, Qbeg, Qend);
    else
        return stdmul(R, Rbeg, Rend,
                      P, Pbeg, Pend,
                      Q, Qbeg, Qend);
}


// Generic sqr with choices between standard and recursive multiplication
// Multiplies between the iterator bounds.
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::sqr(
    Rep& R, const RepIterator Rbeg, const RepIterator Rend,
    const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend) const {

    Type_t two; _domain.init(two);
    _domain.add(two, _domain.one, _domain.one);

    if ( (Pend-Pbeg)> SQR_THRESHOLD )
        return sqrrec(R, Rbeg, Rend,
                      P, Pbeg, Pend,
                      two);
    else
        return stdsqr(R, Rbeg, Rend,
                      P, Pbeg, Pend,
                      two);
}




// Standard multiplication between iterator bounds
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdmul(
    Rep& R, const RepIterator Rbeg, const RepIterator Rend,
    const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
    const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const {

	RepConstIterator ai=Pbeg,bi=Qbeg;
	RepIterator ri=Rbeg, rig=Rbeg;
	if (_domain.isZero(*ai))
		for(;bi!=Qend;++bi,++ri)
			*ri = _domain.zero;
	else
		for(;bi!=Qend;++bi,++ri)
			if (_domain.isZero(*bi))
				*ri = _domain.zero;
			else
				_domain.mul(*ri,*ai,*bi);

	for(;ri!=Rend;++ri)
		*ri = _domain.zero;
	for(++ai,++rig;ai!=Pend;++ai,++rig)
		if (! _domain.isZero(*ai))
			for(ri=rig,bi=Qbeg;bi!=Qend;++bi,++ri)
				_domain.axpyin(*ri,*ai,*bi);
	return R;
}

template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::karamul( Rep& R, const RepIterator Rbeg, const RepIterator Rend, const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend, const Rep& Q, const RepConstIterator Qbeg, const RepConstIterator Qend ) const
{
    // Initialize R to zero
    for(RepIterator ri=Rbeg; ri!= Rend; ++ri) _domain.assign(*ri,_domain.zero);


    const size_t halfP = (size_t) ((Pend-Pbeg)>>1);
    const size_t halfQ = (size_t) ((Qend-Qbeg)>>1);
    const size_t half = GIVMIN(halfP, halfQ);
    const size_t halfR = half<<1;

    const RepConstIterator Pmid=Pbeg+(ssize_t)half;		// cut P in halves
    const RepConstIterator Qmid=Qbeg+(ssize_t)half;		// cut Q in halves
    const RepIterator Rmid=Rbeg+(ssize_t)halfR;			// cut R in halves

    mul(R, Rbeg, Rmid, 				// Recursive dynamic choice
        P, Pbeg, Pmid,
        Q, Qbeg, Qmid);				// PlQl in first storage part of R

    mul(R, Rmid, Rend,				// Recursive dynamic choice
        P, Pmid, Pend,
        Q, Qmid, Qend);				// PhQh in second storage part of R

    Rep PHPL;
    for(RepConstIterator PHi=Pmid; PHi!=Pend; ++PHi)
        PHPL.push_back(*PHi);
    subin(PHPL, PHPL.begin(), P, Pbeg, Pmid);	// Ph - Pl
    setdegree(PHPL);

    Rep QHQL;
    for(RepConstIterator QHi=Qmid; QHi!=Qend; ++QHi)
        QHQL.push_back(*QHi);
    subin(QHQL, QHQL.begin(), Q, Qbeg, Qmid);	// Qh - Ql
    setdegree(QHQL);

    Rep M;
    mul(M, 					// Recursive dynamic choice
        PHPL,
        QHQL);					// (Ph-Pl)(Qh-Ql)
    setdegree(M);

    subin(M, M.begin(), M.end(), R, Rbeg, Rmid);// -= PlQl
    setdegree(M);

    subin(M, M.begin(), M.end(), R, Rmid, Rend);// -= PhQh
    setdegree(M);


    RepIterator ri=Rbeg+(ssize_t)half;
    RepConstIterator mi=M.begin();		// update R with mid product
    for( ; mi != M.end(); ++ri, ++mi) _domain.subin(*ri, *mi);

    return R;
}


template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::sqrrec( Rep& R, const RepIterator Rbeg, const RepIterator Rend, const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend, const Type_t& two) const
{
    // Initialize R to zero
    for(RepIterator ri=Rbeg; ri!= Rend; ++ri) _domain.assign(*ri,_domain.zero);


    const size_t half = (size_t) ((Pend-Pbeg)>>1);
    const size_t halfR = (half<<1);

    const RepConstIterator Pmid=Pbeg+(ssize_t)half;  // cut P in halves
    const RepIterator Rmid=Rbeg+(ssize_t)halfR;	// cut R in halves

    sqr(R, Rbeg, Rmid-1, 			// Recursive dynamic choice
        P, Pbeg, Pmid);				// Pl^2 in first storage part of R

    sqr(R, Rmid, Rend,				// Recursive dynamic choice
        P, Pmid, Pend);				// Ph^2 in second storage part of R

    Rep M(P.size());
    mul(M, M.begin(), M.end(),                  // Recursive dynamic choice
        P, Pbeg, Pmid,
        P, Pmid, Pend);
    setdegree(M);
    this->mulin(M,two);

    RepIterator ri=Rbeg+(ssize_t)half;
    RepConstIterator mi=M.begin();		// update R with mid product
    for( ; mi != M.end(); ++ri, ++mi) _domain.addin(*ri, *mi);

    return R;
}

// Standard square
template <class Domain>
inline typename Poly1Dom<Domain,Dense>::Rep& Poly1Dom<Domain,Dense>::stdsqr(
    Rep& R, const RepIterator Rbeg, const RepIterator Rend,
    const Rep& P, const RepConstIterator Pbeg, const RepConstIterator Pend,
    const Type_t& two) const {

    _domain.mul(*Rbeg, *Pbeg, *Pbeg);

    RepIterator rit(Rbeg);
    RepConstIterator pit=Pbeg;
    for(++rit,++pit; rit != Rend; ++pit, ++rit) {

        _domain.assign(*rit,_domain.zero);

        RepConstIterator backpit=pit, forpit=pit;
        for(--backpit ; forpit != Pend; --backpit, ++forpit) {
            _domain.axpyin(*rit, *backpit, *forpit);
            if (backpit == Pbeg) break;
        }


        _domain.mulin(*rit, two);

        ++rit;

        _domain.assign(*rit,_domain.zero);

        backpit=pit, forpit=pit;
        for(--backpit,++forpit; forpit != Pend; --backpit, ++forpit)
        {
            _domain.axpyin(*rit, *backpit, *forpit);
            if (backpit == Pbeg) break;
        }
        _domain.mulin(*rit, two);
        _domain.axpyin(*rit, *pit, *pit);

    }



//     for(size_t i=0; i<dR; ++i) {
//             // even coefficients
//         _domain.assign(R[i],_domain.zero);
//         size_t iot(i>>1);
//         size_t firstj( i>dP ? i-dP : 0);
//         for(size_t j=firstj; j<iot; ++j)
//             _domain.axpyin(R[i], P[j], P[i-j]);
//         _domain.mulin(R[i], two);
//         _domain.axpyin(R[i],P[iot],P[iot]);

//             // odd coefficients
//         ++i; ++iot;
//         _domain.assign(R[i],_domain.zero);
//         firstj = i>dP ? i-dP : 0;
//         for(size_t j=firstj; j<iot; ++j) {
//             _domain.axpyin(R[i], P[j], P[i-j]);
//         }
//         _domain.mulin(R[i], two);

//     }
//     _domain.mul(R[dR],P[dP],P[dP]);


	return R;
}



}
#endif // __GIVARO_poly1_kara_INL