This file is indexed.

/usr/include/givaro/givrational.h is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/kernel/rational/givrational.h,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: M. Samama, T. Gautier
// $Id: givrational.h,v 1.13 2011-02-02 16:23:56 briceboyer Exp $
// ==========================================================================
/*! @file givrational.h
 * @ingroup rational
 * @brief Rationals (and domain)
 * NO DOC.
 */
#ifndef __GIVARO_rational_H
#define __GIVARO_rational_H
// #define __GIVARO_GMPplusplus_rational_H

#include "givaro/givinteger.h"
#include "givaro/givmodule.h"
#include "givaro/ring-interface.h"

namespace Givaro {

// ----------------------------------- Functions Rational

class Rational ;
int compare(const Rational& a, const Rational& b) ;
int absCompare(const Rational& a, const Rational& b) ;
const Rational pow(const Rational &r, const int64_t l);
const Integer floor (const Rational &r) ;
const Integer ceil  (const Rational &r) ;
const Integer round (const Rational &r) ;
const Integer trunc (const Rational &r) ;
const Rational abs  (const Rational &r) ;
const Rational pow (const Rational& n, uint l);
const Rational pow (const Rational& n, uint64_t l);
uint64_t length (const Rational& r) ;
int sign   (const Rational& r) ;
int isZero (const Rational& r) ;
int isOne  (const Rational& r) ;
int isMOne  (const Rational& r) ;
int isInteger(const Rational& r);

template<class RatElement>
class QField;


//! Rationals. No doc.
class Rational {

public :
        // Cstor et dstor
    Rational(Neutral n = Neutral::zero) ;
    Rational(int32_t n) ;
    Rational(uint32_t n) ;
    Rational(int64_t n) ;
    Rational(uint64_t n) ;
    Rational(int64_t n, int64_t d ) ;
    Rational(uint64_t n, uint64_t d ) ;
    Rational(int32_t n, int32_t d ) ;
    Rational(uint32_t n, uint32_t d ) ;
    Rational(double x) ;
    Rational(const char* s) ;
    Rational(const Integer& n) ;
    Rational(const Integer& n, const Integer& d, int red = 1 ) ;
        // Rational number reconstruction
	/*! @brief Rational number reconstruction.
	 * \f$ num/den \equiv f \mod m\f$, with \f$|num|<k\f$ and \f$0 < |den| \leq f/kf\f$
	 * @bib
	 * - von zur Gathen & Gerhard <i>Modern Computer Algebra</i>, 5.10, Cambridge Univ. Press 1999]
	 */

    Rational(const Integer& f, const Integer& m, const Integer& k, bool recurs = false ) ;
    Rational(const Rational&) ;
        //~Rational();

        // Predefined cstes
    static const Rational zero ;
    static const Rational one ;
    static const Rational mOne ;

        // Logical and physical copies
    Rational& operator = (const Rational& );
    Rational& logcpy (const Rational& ) ;
    Rational& copy (const Rational& ) ;

//------------------Equalities and inequalities between rationals
    friend int compare(const Rational& a, const Rational& b) ;
    friend int absCompare(const Rational& a, const Rational& b) ;


//----------------Elementary arithmetic between Rational
    Rational operator + (const Rational& r) const ;
    Rational operator - (const Rational& r) const ;
    Rational operator - () const ;
    Rational operator + () const ;
    Rational operator * (const Rational& r) const ;
    Rational operator / (const Rational &r) const ;
    Rational& operator += (const Rational& r) ;
    Rational& operator -= (const Rational& r) ;
    Rational& operator *= (const Rational& r) ;
    Rational& operator /= (const Rational &r) ;

    Integer operator % (const Integer &r) const;

//-----------------------------------------Arithmetic functions
    friend const Rational pow(const Rational &r, const int64_t l);

//-----------------------------------------Miscellaneous
    friend const Integer floor (const Rational &r) ;
    friend const Integer ceil  (const Rational &r) ;
    friend const Integer round (const Rational &r) ;
    friend const Integer trunc (const Rational &r) ;

    inline friend const Rational abs  (const Rational &r) ;

    friend const Rational pow (const Rational& n, uint32_t l) {
        Rational r;
        r.num = ::Givaro::pow(n.num, l); r.den =  ::Givaro::pow(n.den, l);
        return r;
    }

    friend const Rational pow (const Rational& n, uint64_t l) {
        Rational r;
        r.num =  ::Givaro::pow(n.num, l); r.den =  ::Givaro::pow(n.den, l);
        return r;
    }

    const Integer nume() const ;
    const Integer deno() const ;
    inline friend uint64_t length (const Rational& r) ;
    inline friend int sign   (const Rational& r) ;
    inline friend int isZero (const Rational& r) ;
    inline friend int isOne  (const Rational& r) ;
    inline friend int isMOne  (const Rational& r) ;
    inline friend int isInteger(const Rational& r);

    std::ostream& print ( std::ostream& o ) const ;

    inline Rational reduce(const Rational& R) const ;

    static void SetReduce() ;
    static void SetNoReduce() ;

        // -- Cast operators
    operator short() const { return (short)(int) *this; }
    operator uint16_t() const { return (uint16_t) (uint32_t) *this; }
    operator uint8_t() const { return (uint8_t)(uint32_t) *this; }
    operator uint32_t() const { return (uint32_t) (this->num/this->den); }
    operator int() const  { return (int) (this->num/this->den); }
    operator signed char() const { return (signed char) (int) *this; }
    operator uint64_t() const { return (uint64_t) (this->num/this->den); }
    operator int64_t() const { return (int64_t) (this->num/this->den); }
    operator std::string() const { return std::string(this->num)+'/'+std::string(this->den); }
    operator float() const { return ((float)this->num)/((float)this->den); }
    operator double() const { return ((double)this->num)/((double)this->den); }

protected: // Internal Representation : num/den
    Integer num, den;

public:
    enum ReduceFlag { Reduce = 0x1, NoReduce = 0x0 } ;
protected:
    static ReduceFlag flags ;    // flags that indicates is reduction is done or not
        // by default = Reduce
    Rational& reduce() ;
        // -- module initialization
    static void Init(int* argc, char***argv);
    static void End();
    friend class GivModule;
    friend class QField<Rational>;
        // Rational number reconstruction
    bool ratrecon(const Integer& f, const Integer& m, const Integer& k, bool recurs = false ) ;

public:
        // - exportation of the module
    static GivModule Module;
        // -- Cstor for Zero and One to delay initialization after the main
    Rational( givNoInit );
}; // ----------------------------------- End of Class Rationalional

extern std::istream& operator>> (std::istream& in, Rational& r) ;
}


#include "givaro/givrational.inl"

namespace Givaro {

//! Rational Domain
template<>
class QField<Rational> : public FieldInterface<Rational> {
public:
    using Self_t = QField<Element>;
    typedef Rational Element;
    typedef Rational Rep;

        // -- Cstor
    QField() : one(1), mOne(-one), zero(0) {}
    template<class X> QField(const X& x) : one(1), mOne(-one),zero(0) {}

    int operator==( const QField<Element>& ) const { return 1;}
    int operator!=( const QField<Element>& ) const { return 0;}

        // -- Constants
    const Element one;
    const Element mOne;
    const Element zero;

    uint64_t characteristic() const { return 0U; }
    Integer& characteristic(Integer& p) const { return p=characteristic();}
    uint64_t cardinality() const { return 0U; }
    Integer& cardinality(Integer& p) const { return p=cardinality();}

        // -- assignement
    Rep& init( Rep& a ) const{ return a; }
    Rep& init( Rep& a, const Integer& n, const Integer& d) const{ return a=Rational(n,d); }
    template<class XXX> Rep& init(Rep& r, const XXX& x) const {
        return Caster<Rep,XXX>(r,x); 
    }
    template<class XXX> XXX& convert(XXX& x, const Rep& a) const {
        return Caster<XXX,Rep>(x,a);
    }

    Rep& assign( Rep& a, const Rep& b) const { return a = b ; }
        // -- integers operators
    Integer& get_num(Integer& n, const Element& r) const { return n=r.nume();}
    Integer& get_den(Integer& d, const Element& r) const { return d=r.deno();}

        // -- arithmetic operators
    Rep& mul( Rep& r, const Rep& a, const Rep& b ) const { return r = a * b; };
    Rep& div( Rep& r, const Rep& a, const Rep& b ) const { return r = a / b; };
    Rep& add( Rep& r, const Rep& a, const Rep& b ) const { return r = a + b; };
    Rep& sub( Rep& r, const Rep& a, const Rep& b ) const { return r = a - b; };

    Rep& mulin( Rep& r, const Rep& a) const { return r *= a; };
    Rep& divin( Rep& r, const Rep& a) const { return r /= a; };
    Rep& addin( Rep& r, const Rep& a) const { return r += a; };
    Rep& subin( Rep& r, const Rep& a) const { return r -= a; };

    Rep& axpy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
        { return r = a * b + c; };
    Rep& axpyin( Rep& r, const Rep& a, const Rep& b ) const
        { return r += a * b; };
    Rep& maxpy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
        { return r = c - a * b; };
    Rep& axmy( Rep& r, const Rep& a, const Rep& b, const Rep& c ) const
        { return r = a * b - c; };
    Rep& axmyin( Rep& r, const Rep& a, const Rep& b ) const
        { return r = a * b - r ; };
    Rep& maxpyin( Rep& r, const Rep& a, const Rep& b ) const
        { return r -= a * b; };

        // -- unary methods
    Rep& neg( Rep& r, const Rep& a ) const { return r = -a; };
    Rep& inv( Rep& r, const Rep& a ) const { r.num=a.den; r.den=a.num; return r; }
    Rep& negin( Rep& r ) const { r.num=-r.num; return r; }
    Rep& invin( Rep& r ) const { std::swap(r.num,r.den); return r; }

        // - return n^l
    Rep& pow(Rep& r, const Rep& n, const uint64_t l) const { return r =  ::Givaro::pow(n, l); }
    Rep& pow(Rep& r, const Rep& n, const uint32_t l) const { return r =  ::Givaro::pow(n, l); }


        // - Rational number reconstruction
    Rep& ratrecon(Rep& r, const Integer& f, const Integer& m, const Integer& k, bool recurs = false) const {
        return r = Rational(f,m,k,recurs);
    }
    Rep& ratrecon(Rep& r, const Integer& f, const Integer& m, bool recurs=true) const {
        return r = Rational(f,m, ::Givaro::sqrt(m),recurs);
    }


        // - Misc
    size_t length (const Rep& a) const { return  ::Givaro::length(a); }
    int sign    (const Rep& a) const { return  ::Givaro::sign(a); }
    bool isOne   (const Rep& a) const { return compare(a, one) ==0; }
    bool isMOne   (const Rep& a) const { return compare(a, mOne) ==0; }
    bool isZero  (const Rep& a) const { return compare(a, zero) ==0; }
    bool areEqual (const Rep& a, const Rep& b) const { return compare(a, b) ==0; }
    int areNEqual(const Rep& a, const Rep& b) const { return compare(a, b) !=0; }
    typedef GeneralRingRandIter<Self_t> RandIter;
    typedef GeneralRingNonZeroRandIter<Self_t> NonZeroRandIter;
    
    template< class MyRandIter > Rep& random(MyRandIter& g, Rep& r, int64_t s = 1) const { return r=Rational(Integer::random(s), Integer::nonzerorandom(s)); }
    template< class MyRandIter > Rep& random(MyRandIter& g, Rep& r, const Rep& b) const { Integer rnum,rden; Integer::random(rnum,b.nume()); Integer::nonzerorandom(rden,b.deno()); return r=Rational(rnum,rden); }
    template< class MyRandIter > Rep& nonzerorandom(MyRandIter& g, Rep& r, int64_t s = 1) const { return r=Rational(Integer::nonzerorandom(s), Integer::nonzerorandom(s)); }
    template< class MyRandIter > Rep& nonzerorandom (MyRandIter& g,Rep& r, const Rep& b) const { Integer rnum,rden; Integer::nonzerorandom(rnum,b.nume()); Integer::nonzerorandom(rden,b.deno()); return r=Rational(rnum,rden); }


        // -- IO
        // -- IO
    std::istream& read ( std::istream& i )
        { char ch;
        i >> std::ws >> ch;
        if (ch != 'R')
            GivError::throw_error(GivBadFormat("QField<Element>::read: bad signature domain"));
        return i;
        }
    std::ostream& write( std::ostream& o ) const { return o << 'R'; }
    std::istream& read ( std::istream& i, Rep& n) const { return i >> n; }
    std::ostream& write( std::ostream& o, const Rep& n) const { return n.print(o); }
};

} //namespace Givaro

#endif // __GIVARO_rational_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s:syntax=cpp.doxygen