This file is indexed.

/usr/include/givaro/modular-log16.h is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: J.G. Dumas
// Time-stamp: <02 Jul 15 11:43:03 Jean-Guillaume.Dumas@imag.fr>
// ==========================================================================
//
//  Modified by Pascal Giorgi on 2002/02/13  (pascal.giorgi@ens-lyon.fr)

/*! @file givzpz16table1.h
 * @ingroup zpz
 * @brief  Arithmetic on Z/pZ, with tabulation of operations.
 */

#ifndef __GIVARO_modular_log16_H
#define __GIVARO_modular_log16_H

#include "givaro/givinteger.h"
#include "givaro/givbasictype.h"
#include "givaro/giverror.h"
#include "givaro/givarray0.h"
#include "givaro/givranditer.h"
#include "givaro/modular-general.h"

namespace Givaro
{
    struct Log16;

    /*! @brief This class implement the standard arithmetic with Modulo Elements.
     * - The representation of an integer a in Zpz is the value a % p
     * - p max is 16381
     * .
     */

    template<>
    class Modular<Log16, Log16>
    {
    public:
        // ----- Exported Types and constantes
        typedef Modular<Log16> Self_t;
        typedef uint16_t Residu_t;                    // - type to store residue
        enum { size_rep = sizeof(Residu_t) };      // - size of the storage type

        // ----- Representation of Element of the domain Modular:
        typedef int16_t Power_t;
        typedef Power_t Rep;
        typedef int16_t Element;
        typedef Element* Element_ptr ;
        typedef const Element* ConstElement_ptr;


        // ----- Representation of vector of the Element
        typedef Residu_t* Array;
        typedef const Residu_t* constArray;

        // ----- Constructor /destor
        inline Modular( Residu_t p = 2 );
        inline Modular( const Modular<Log16>& F);
        inline ~Modular();

        bool operator==( const Modular<Log16>& BC) const { return _p == BC._p;}
        bool operator!=( const Modular<Log16>& BC) const { return _p != BC._p;}

        Modular<Log16>& operator=( const Modular<Log16>& F);

        // ----- Access to the modulus
        Residu_t residu() const;
        Residu_t size() const { return _p;}

        inline Residu_t characteristic() const { return _p; }
        inline Residu_t cardinality() const { return _p; }
        template<class T> inline T& characteristic(T& p) const { return p = _p; }
        template<class T> inline T& cardinality(T& p) const { return p = _p; }

        // ----- Convert from Element to int
        int16_t& convert( int16_t& x , const Rep a) const {
            return x = Rep((a >= _p)?0:_tab_rep2value[a]);
        }
        uint16_t& convert( uint16_t& x , const Rep a) const {
            return x = Residu_t((a >= _p)?0:_tab_rep2value[a]);
        }
        uint32_t & convert( uint32_t& x , const Rep a) const {
            return x = uint32_t((a >= _p)?0:_tab_rep2value[a]);
        }
        int32_t& convert( int32_t& x , const Rep a)  const {
            return x = (int32_t)((a >= _p)?0:_tab_rep2value[a]);
        }
        uint64_t & convert( uint64_t& x , const Rep a) const {
            return x = ((a >= _p)?0:_tab_rep2value[a]);
        }
        int64_t& convert( int64_t& x , const Rep a)  const {
            return x = (int64_t)((a >= _p)?0:_tab_rep2value[a]);
        }

        double& convert( double& x , const Rep a)  const {
            return x = (double)((a >= _p)?0:_tab_rep2value[a]);
        }
        Integer& convert(Integer& i, const Rep a) const {
            return i = (Integer)((a >= _p)?0:_tab_rep2value[a]);
        }


        // initialized by a degree of the generator.
        Rep& init( Rep& r ) const;
        Rep& init( Rep& r, const int64_t a) const;
        Rep& init( Rep& a, const int32_t i) const ;
        Rep& init( Rep& r, const uint64_t a) const;
        Rep& init( Rep& a, const uint32_t i) const ;
        Rep& init( Rep& a, const Integer& i) const ;
        Rep& init( Rep& a, const double i) const;
        Rep& init( Rep& a, const float i) const;

        // Specials
        Rep& init( Rep& a, const int16_t i) const ;
        Rep& init( Rep& r, const uint16_t a) const;

        // -- Assignment :  r = a
        Rep& assign (Rep& r, const Rep a) const;
        void assign ( const size_t sz, Array r, constArray a ) const;

        // ----- Misc methods
        bool iszero( const Rep a ) const;
        bool isone ( const Rep a ) const;
        bool ismone ( const Rep a ) const;
        bool isZero( const Rep a ) const;
        bool isOne ( const Rep a ) const;
        bool isMOne ( const Rep a ) const;
        size_t length ( const Rep a ) const;


        // ----- Equality between two Elements
        bool areEqual( const Element& a, const Element& b) const {return a==b;}


        // ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
        Rep& mul (Rep& r, const Rep a, const Rep b) const;
        Rep& div (Rep& r, const Rep a, const Rep b) const;
        Rep& add (Rep& r, const Rep a, const Rep b) const;
        Rep& sub (Rep& r, const Rep a, const Rep b) const;
        Rep& neg (Rep& r, const Rep a) const;
        Rep& inv (Rep& r, const Rep a) const;

        Rep& mulin (Rep& r, const Rep a) const;
        Rep& divin (Rep& r, const Rep a) const;
        Rep& addin (Rep& r, const Rep a) const;
        Rep& subin (Rep& r, const Rep a) const;
        Rep& negin (Rep& r) const;
        Rep& invin (Rep& r) const;


        // ----- Operations with reduction: r <- a op b mod p, r <- op a mod p
        void mul (const size_t sz, Array r, constArray a, constArray b) const;
        void mul (const size_t sz, Array r, constArray a, Rep b) const;

        void div (const size_t sz, Array r, constArray a, constArray b) const;
        void div (const size_t sz, Array r, constArray a, Rep b) const;

        void add (const size_t sz, Array r, constArray a, constArray b) const;
        void add (const size_t sz, Array r, constArray a, Rep b) const;

        void sub (const size_t sz, Array r, constArray a, constArray b) const;
        void sub (const size_t sz, Array r, constArray a, Rep b) const;

        void neg (const size_t sz, Array r, constArray a) const;
        void inv (const size_t sz, Array r, constArray a) const;

        // -- axpy: r <- a * x + y mod p
        Rep& axpy   (Rep& r, const Rep a, const Rep b, const Rep c) const;
        Rep& axpyin (Rep& r, const Rep a, const Rep b) const;
        void axpy
        (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
        void axpyin
        (const size_t sz, Array r, constArray a, constArray x) const;

        // -- axmy: r <- a * x - y mod p
        Rep& axmy   (Rep& r, const Rep a, const Rep b, const Rep c) const;
        void axmy
        (const size_t sz, Array r, constArray a, constArray x, constArray c) const;
        // -- axmyin: r <- a * b - r  mod p
        Rep& axmyin (Rep& r, const Rep a, const Rep b) const;
        // void axmyin (const size_t sz, Array r, constArray a, constArray x) const;

        // -- maxpy: r <- c - a * b mod p
        Rep& maxpy   (Rep& r, const Rep a, const Rep b, const Rep c) const;
        // -- maxpyin: r <- r - a * b mod p
        Rep& maxpyin (Rep& r, const Rep a, const Rep b) const;
        void maxpyin (const size_t sz, Array r, constArray a, constArray x) const;


        // <- \sum_i a[i], return 1 if a.size() ==0,
        Rep& reduceadd ( Rep& r, const size_t sz, constArray a ) const;

        // <- \prod_i a[i], return 1 if a.size() ==0,
        Rep& reducemul ( Rep& r, const size_t sz, constArray a ) const;

        // <- \sum_i a[i] * b[i]
        Rep& dotprod ( Rep& r, const size_t sz, constArray a, constArray b ) const;
        Rep& dotprod ( Rep& r, const int32_t bound, const size_t sz, constArray a, constArray b ) const;

        // ----- a -> r: uint16_t to double
        void i2d ( const size_t sz, double* r, constArray a ) const;

        // ----- a -> r % p: double to uint16_t % p
        void d2i ( const size_t sz, Array r, const double* a ) const;

        // ----- Random generators
        typedef ModularRandIter<Self_t> RandIter;
        typedef GeneralRingNonZeroRandIter<Self_t> NonZeroRandIter;
        template< class Random > Element& random(Random& g, Element& r) const
        { return init(r, g()); }
        template< class Random > Element& nonzerorandom(Random& g, Element& a) const
        { while (isZero(init(a, g())))
                ;
            return a; }


        // --- IO methods
        std::istream& read ( std::istream& s );
        std::ostream& write( std::ostream& s ) const;
        std::istream& read ( std::istream& s, Rep& a ) const;
        std::ostream& write( std::ostream& s, const Rep a ) const;

    protected:
        // -- data representation of the domain:
        Residu_t  _p;  // the modulo
        Residu_t  _pmone;  // _p -1
        Power_t * _tab_value2rep;    // table for convertion
        Residu_t* _tab_rep2value;    // table for convertion
        Power_t* _tab_mul;      // table for mul
        Power_t* _tab_div;      // table for div
        Power_t* _tab_neg;      // table for neg
        Power_t* _tab_addone;   // table for ei+1
        Power_t* _tab_subone;   // table for -(ei+1)
        Power_t* _tab_mone;   // table for ei+1
        Power_t* _tab_pone;   // table for -(ei+1)
        int* numRefs;

    public:
        // ----- Constantes
        const Element zero;
        const Element one;
        const Element mOne;

    public:

        static inline Residu_t maxCardinality() { return 16381; }
        static inline Residu_t minCardinality() { return 2; }

    };

} // namespace Givaro

#include "givaro/modular-log16.inl"

#endif // __GIVARO_modular_log16_H