This file is indexed.

/usr/include/givaro/modular-log16.inl is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/kernel/zpz/givzpz16table1.inl,v $
// Copyright(c)'1994-2009 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: J.G. Dumas$
// Modified by Pascal Giorgi 2002/04/24
// $Id: givzpz16table1.inl,v 1.13 2011-02-04 14:11:46 jgdumas Exp $
// ==========================================================================
// Description:

// ---------
// -- normalized operations
// ---------

#ifndef __GIVARO_modular_log16_INL
#define __GIVARO_modular_log16_INL

#define __GIVARO_ZPZ16_LOG_MUL(r,p,a,b) ( (r)=  _tab_mul[(a) + (b)] )
#define __GIVARO_ZPZ16_LOG_DIV(r,p,a,b) ( (r)=  _tab_div[(a) - (b)] )
#define __GIVARO_ZPZ16_LOG_INV(r,p,b)   ( (r)=  _tab_div[ - (b)] )
#define __GIVARO_ZPZ16_LOG_SUB(r,p,a,b) ( (r)=  _tab_mul[(a) + _tab_subone[(b) - (a)] ] )
#define __GIVARO_ZPZ16_LOG_ADD(r,p,a,b) ( (r)=  _tab_mul[(a) + _tab_addone[(b) - (a)] ] )
#define __GIVARO_ZPZ16_LOG_NEG(r,p,a)   ( (r)=  _tab_neg[(a)] )

#define __GIVARO_ZPZ16_LOG_MUL_RES(r,p,a,b) ( (r)= (Residu_t) _tab_mul[(a) + (b)] )
#define __GIVARO_ZPZ16_LOG_DIV_RES(r,p,a,b) ( (r)= (Residu_t) _tab_div[(a) - (b)] )
#define __GIVARO_ZPZ16_LOG_INV_RES(r,p,b)   ( (r)= (Residu_t) _tab_div[ - (b)] )
#define __GIVARO_ZPZ16_LOG_SUB_RES(r,p,a,b) ( (r)= (Residu_t) _tab_mul[(a) + _tab_subone[(b) - (a)] ] )
#define __GIVARO_ZPZ16_LOG_ADD_RES(r,p,a,b) ( (r)= (Residu_t) _tab_mul[(a) + _tab_addone[(b) - (a)] ] )
#define __GIVARO_ZPZ16_LOG_NEG_RES(r,p,a)   ( (r)= (Residu_t) _tab_neg[(a)] )


/* Pascal Giorgi
   Changing the order of parameters.
   */
#define __GIVARO_ZPZ16_LOG_MULADD(r,p,a,b,c) \
{ __GIVARO_ZPZ16_LOG_MUL(r, p, a, b); __GIVARO_ZPZ16_LOG_ADD(r, p, r, c); }

// a*b-c
#define __GIVARO_ZPZ16_LOG_MULSUB(r,p,a,b,c) \
{ __GIVARO_ZPZ16_LOG_MUL(r, p, a, b); __GIVARO_ZPZ16_LOG_SUB(r, p, r, c); }

#define __GIVARO_ZPZ16_LOG_MULADD_RES(r,p,a,b,c) \
{ __GIVARO_ZPZ16_LOG_MUL_RES(r, p, a, b); __GIVARO_ZPZ16_LOG_ADD_RES(r, p, r, c); }
#define __GIVARO_ZPZ16_LOG_MULSUB_RES(r,p,a,b,c) \
{ __GIVARO_ZPZ16_LOG_MUL_RES(r, p, a, b); __GIVARO_ZPZ16_LOG_SUB_RES(r, p, r, c); }

namespace Givaro
{

    inline Modular<Log16, Log16>::Modular( Residu_t p ) :
        _p(p),_pmone(Residu_t(p-1)),zero(Rep(_pmone << 1)), one(0),mOne(Rep(_pmone>>1))
    {
        int32_t i,j;

        // tab value: Domain -> Rep, or something very similar
        _tab_value2rep = new Power_t[_p];
        // tab power: Rep -> Domain
        _tab_rep2value = new Residu_t[_p];

        _tab_rep2value[0] = 1;
        _tab_value2rep[1] = 0;

        int32_t fourp = ((int32_t)p) << 2, fourpmone= ((int32_t)_pmone)<<2;

        bool not_found = 1;
        Residu_t accu = 1;
        Residu_t seed =2;

        // -- Find a generator of the multiplicative group
        while (_p > 2 && not_found)
        {
            for(i=1; i<_p; i++)
            {
                accu = Residu_t((accu * seed) % _p);
                _tab_rep2value[i] = accu;
                if (accu == 1)
                    break;
                _tab_value2rep[accu] = Rep(i);
            }
            if (accu != 1){
                std::cerr << "attempted to build Log16 field with non-prime base "<<_p<<", halting\n";
                return;
            }
            if (i ==_p-1) not_found = false;
            else {
                do {
                    seed = Residu_t(rand() % _p);
                } while ((seed ==0) && (seed !=1));
            }
        }
        // -- Set the zero at position 2 * _p - 2 in table
        _tab_value2rep[0] = zero;

        // -- Table for multiplication
        _tab_mul = new Power_t[(size_t)fourp];
        for(j=0; j<_pmone; j++)
            _tab_mul[j] = (Rep)j;
        for(j=_pmone; j< (int32_t)zero; j++)
                   _tab_mul[j] = Rep(j-_pmone);
        for(j=zero; j<= fourpmone; j++)
            _tab_mul[j] = zero;

        // -- Table for division and neg:
        _tab_div = &_tab_mul[_pmone];
        _tab_neg = &_tab_mul[_pmone/2];

        // -- Table for 1+value
        _tab_pone = new Power_t[(size_t)fourp];
        _tab_addone = &_tab_pone[(int32_t)(zero)];

        /* Pascal Giorgi 24/04/02
           Error between _tab_rep2value and _tab_value2rep
           corrected by inversing the array
           */
           
        for(j=0; j<_pmone; j++){
            if (_tab_rep2value[j] < _pmone)
                _tab_addone[j] = _tab_value2rep[ 1 + _tab_rep2value[j] ];
            else
                _tab_addone[j] = _tab_value2rep[0];
        }
        for(j=1-_pmone; j<0; j++){
            if (_tab_rep2value[j+_pmone] < _pmone)
                _tab_addone[j] = _tab_value2rep[ 1 + _tab_rep2value[j + _pmone] ];
            else
                _tab_addone[j] = _tab_value2rep[0];

        }
        for(j=_pmone; j<=(int32_t)zero; j++)
            _tab_addone[j] = 0;
        for(j=(int32_t)-zero; j<(int32_t)(1-_pmone); j++)
            _tab_addone[j] = (Rep)j;

        _tab_addone[_pmone / 2] = zero;
        _tab_addone[-_pmone / 2] = zero;


        // -- Table for 1-value
        _tab_mone = new Power_t[(size_t)fourp];
        _tab_subone = &_tab_mone[(int32_t)zero];

        for(j=_pmone; j<=(int32_t)zero; j++)
            _tab_subone[j] = 0;
        for(j=-zero; j<(int32_t)(1-3*_pmone/2); j++)
            _tab_subone[j] = Rep(j+_pmone/2);
        for(j=-3*_pmone/2; j<(1-_pmone); j++)
            _tab_subone[j] = Rep(j-_pmone/2);
        for(j=1-_pmone; j<(1-_pmone/2); j++)
            _tab_subone[j] = _tab_addone[j + _pmone/2 + _pmone];
        for(j=_pmone/2; j<_pmone; j++)
            _tab_subone[j] = _tab_addone[j - _pmone/2];

        for(j=-_pmone/2; j<_pmone/2; j++)
            _tab_subone[j] = _tab_addone[j+_pmone/2];

        numRefs = new int;
        (*numRefs) = 1;
    }

    inline Modular<Log16, Log16>::Modular(const Modular<Log16, Log16>& F) :
        _p ( F._p),
        _pmone ( F._pmone),
        _tab_value2rep ( F._tab_value2rep),
        _tab_rep2value ( F._tab_rep2value),
        _tab_mul ( F._tab_mul),
        _tab_div ( F._tab_div),
        _tab_neg ( F._tab_neg),
        _tab_addone ( F._tab_addone),
        _tab_subone ( F._tab_subone),
        _tab_mone ( F._tab_mone),
        _tab_pone ( F._tab_pone),
        numRefs ( F.numRefs),

        zero(F.zero), one(F.one),mOne(F.mOne)
    {
      (*numRefs)++;
    }

    inline Modular<Log16, Log16>& Modular<Log16, Log16>::operator=( const Modular<Log16, Log16>& F)
    {

        F.assign(const_cast<Element&>(one),F.one);
        F.assign(const_cast<Element&>(zero),F.zero);
        F.assign(const_cast<Element&>(mOne),F.mOne);


      if (this->numRefs) {
        (*(this->numRefs))--;
        if ((*(this->numRefs))==0) {
          delete [] _tab_value2rep;
          delete [] _tab_rep2value;
          delete [] _tab_mul;
          delete [] _tab_mone;
          delete [] _tab_pone;
          delete numRefs;
        }
      }

      this->_p = F.residu();
      this->_pmone = F._pmone;
      this->_tab_value2rep = F._tab_value2rep;
      this->_tab_rep2value = F._tab_rep2value;
      this->_tab_mul = F._tab_mul;
      this->_tab_div = F._tab_div;
      this->_tab_neg = F._tab_neg;
      this->_tab_mone = F._tab_mone;
      this->_tab_pone = F._tab_pone;
      this->_tab_addone = F._tab_addone;
      this->_tab_subone = F._tab_subone;
      this->numRefs = F.numRefs;
      (*(this->numRefs))++;

      return *this;
    }

    inline Modular<Log16, Log16>::~Modular()
    {
      (*numRefs)--;
      if (*numRefs == 0) {
        delete [] _tab_value2rep;
        delete [] _tab_rep2value;
        delete [] _tab_mul;
        delete [] _tab_mone;
        delete [] _tab_pone;
        delete numRefs;
      }
    }

    inline Modular<Log16, Log16>::Residu_t Modular<Log16, Log16>::residu( ) const
    {
        return _p;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::mul (Rep& r, const Rep a, const Rep b) const
    {
        int32_t tmp;
        __GIVARO_ZPZ16_LOG_MUL(tmp,(int32_t)_p,(int32_t)a,(int32_t)b);
        return r= (Modular<Log16, Log16>::Rep)tmp;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::div (Rep& r, const Rep a, const Rep b) const
    {
        __GIVARO_ZPZ16_LOG_DIV(r,_p,a,b);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::sub (Rep& r, const Rep a, const Rep b) const
    {
        __GIVARO_ZPZ16_LOG_SUB(r,_p,a,b);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::add (Rep& r, const Rep a, const Rep b) const
    {
        __GIVARO_ZPZ16_LOG_ADD(r,_p,a,b);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::neg (Rep& r, const Rep a) const
    {
        __GIVARO_ZPZ16_LOG_NEG(r,_p,a);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::inv (Rep& r, const Rep a) const
    {
        __GIVARO_ZPZ16_LOG_INV(r,_p,a);
        return r;
    }

    // -- inline array operations between Modular<Log16, Log16>::Rep
    inline void Modular<Log16, Log16>::mul (const size_t sz, Array r, constArray a, constArray b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MUL_RES(r[i], _p,a[i], b[i]);
        }
    }

    inline void Modular<Log16, Log16>::mul (const size_t sz, Array r, constArray a, Rep b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MUL_RES(r[i], _p, a[i], b);
        }
    }

    inline void Modular<Log16, Log16>::div (const size_t sz, Array r, constArray a, constArray b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_DIV_RES( r[i], _p, a[i], b[i]);
        }
    }

    inline void Modular<Log16, Log16>::div (const size_t sz, Array r, constArray a, Rep b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_DIV_RES( r[i], _p, a[i], b);
        }
    }

    inline void Modular<Log16, Log16>::add (const size_t sz, Array r, constArray a, constArray b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_ADD_RES(r[i], _p, a[i], b[i]);
        }
    }

    inline void Modular<Log16, Log16>::add (const size_t sz, Array r, constArray a, Rep b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_ADD_RES(r[i], _p, a[i], b);
        }
    }

    inline void Modular<Log16, Log16>::sub (const size_t sz, Array r, constArray a, constArray b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_SUB_RES(r[i], _p, a[i], b[i]);
        }
    }

    inline void Modular<Log16, Log16>::sub (const size_t sz, Array r, constArray a, Rep b) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_SUB_RES(r[i], _p, a[i], b);
        }
    }

    inline void Modular<Log16, Log16>::neg (const size_t sz, Array r, constArray a) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_NEG_RES(r[i], _p, a[i]);
        }
    }


    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::mulin (Rep& r, const Rep a) const
    {
        __GIVARO_ZPZ16_LOG_MUL(r,_p, r,a);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::divin (Rep& r, const Rep a) const
    {
        Modular<Log16, Log16>::Rep ia;
        inv(ia, a);
        mulin(r, ia);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::addin (Rep& r, const Rep a) const
    {
        __GIVARO_ZPZ16_LOG_ADD(r, _p, r,a);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::subin (Rep& r, const Rep a) const
    {
        __GIVARO_ZPZ16_LOG_SUB(r,_p, r,a);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::negin (Rep& r) const
    {
        __GIVARO_ZPZ16_LOG_NEG(r,_p,r);
        return r;
    }

    inline Modular<Log16, Log16>::Rep&  Modular<Log16, Log16>::invin (Rep& r) const
    {
        __GIVARO_ZPZ16_LOG_INV(r,_p,r);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::axpy
    (Rep& r, const Rep a, const Rep b, const Rep c) const
    {
        __GIVARO_ZPZ16_LOG_MULADD(r, _p, a, b, c);
        return r;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::axpyin
    (Rep& r, const Rep a, const Rep b) const
    {
        return axpy(r,a,b,r);
    }


    inline void Modular<Log16, Log16>::axpy
    (const size_t sz, Array r, constArray a, constArray x, constArray y) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MULADD_RES(r[i], _p, a[i], x[i], y[i]);
        }
    }

    inline void Modular<Log16, Log16>::axpyin
    (const size_t sz, Array r, constArray a, constArray x) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MULADD_RES(r[i], _p, a[i], x[i], r[i]);
        }
    }

    // r <- a*b-c
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::axmy
    (Rep& r, const Rep a, const Rep b, const Rep c) const
    {
        __GIVARO_ZPZ16_LOG_MULSUB(r,_p,a,b,c);
        return r;
    }

    // r <- r-a*b
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::maxpyin
    (Rep& r, const Rep a, const Rep b) const
    {
        Rep t; __GIVARO_ZPZ16_LOG_MUL(t,_p,a,b);
        return this->subin(r,t);
    }

    // r <- c-a*b
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::maxpy
    (Rep& r, const Rep a, const Rep b, const Rep c) const
    {
        Rep t; __GIVARO_ZPZ16_LOG_MUL(t,_p,a,b);
        return this->sub(r,c,t);
    }


    // r <- a*b-r
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::axmyin (Rep& r,
                              const Rep a, const Rep b) const
    {
        Rep t; __GIVARO_ZPZ16_LOG_MUL(t,_p,a,b);
        return sub(r,t,r);
    }

    inline void Modular<Log16, Log16>::axmy
    (const size_t sz, Array r, constArray a, constArray x, constArray y) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MULSUB_RES(r[i], _p, a[i], x[i], y[i]);
        }
    }

    inline void Modular<Log16, Log16>::maxpyin (const size_t sz, Array r,
                        constArray a, constArray x) const
    {
        for ( size_t i=sz ; --i ; ) {
            __GIVARO_ZPZ16_LOG_MULSUB_RES(r[i], _p, a[i], x[i], r[i]);
            __GIVARO_ZPZ16_LOG_NEG_RES(r[i], _p, r[i]);
        }
    }

    // ------------------------- Miscellaneous functions

    inline bool Modular<Log16, Log16>::iszero(const Rep a) const
    {
        return a >= _p;
    }

    inline bool Modular<Log16, Log16>::isone(const Rep a) const
    {
        return a == Modular<Log16, Log16>::one;
    }

    inline bool Modular<Log16, Log16>::ismone(const Rep a) const
    {
        return a == Modular<Log16, Log16>::mOne;
    }


    inline size_t Modular<Log16, Log16>::length(const Rep ) const
    {
        return Modular<Log16, Log16>::size_rep;
    }

    inline bool Modular<Log16, Log16>::isZero( const Rep a ) const
    {
        return iszero(a);
    }
    inline bool Modular<Log16, Log16>::isOne ( const Rep a ) const
    {
        return isone(a);
    }
    inline bool Modular<Log16, Log16>::isMOne ( const Rep a ) const
    {
        return ismone(a);
    }


    // ---------
    // -- misc operations
    // ---------
#if 0
    inline void Modular<Log16, Log16>::assign
    ( const size_t sz, Array r, constArray a ) const
    {
        for ( size_t i=sz ; --i ; ) {
            if (a[i] <Modular<Log16, Log16>::zero) {
                r[i] = a[i] + _p;
                if (r[i] <Modular<Log16, Log16>::zero) r[i] = r[i] % _p;
            }
            else if (a[i] >_p) {
                r[i] = a[i] - _p;
                if (r[i] >_p) r[i] = r[i] % _p;
            }
            else r[i] = a[i];
        }
    }
#endif

    inline void Modular<Log16, Log16>::assign ( const size_t sz, Array r, constArray a ) const
    {
        for ( size_t i=sz ; --i ; )
            r[i] = a[i];
    }



    // initialized by a degree of the generator.
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r ) const
    {
        return r = zero;
    }


    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::assign ( Rep& r, const Rep a ) const
    {
        return r = a;
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const int64_t a ) const
    {
        int sign; uint64_t ua;
        if (a <0) {
            sign =-1;
            ua = (uint64_t)-a;
        }
        else {
            ua = (uint64_t)a;
            sign =1;
        }
        r = Rep( (ua >=_p) ? ua % _p : ua );
        if (sign ==-1)
            r = Rep(_p - r);
        assert(r < _p);
        return r = _tab_value2rep[r];
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const int32_t a ) const
    {
        return Modular<Log16, Log16>::init( r, (int64_t)a);
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const uint64_t a ) const
    {
        r = Rep((a >=_p) ? a % _p : a);
        assert(r < _p);
        return r= _tab_value2rep[r];
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const uint32_t a ) const
    {
        r = Rep((a >=_p) ? a % _p : a);
        assert(r < _p);
        return r= _tab_value2rep[r];
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const uint16_t a ) const
    {
        r = Rep((a >=_p) ? a % _p : a);
        assert(r < _p);
        return r= _tab_value2rep[r];
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const int16_t a ) const
    {
        return Modular<Log16, Log16>::init( r, (int64_t)a);
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init( Rep& a, const double i) const
    {
        return init(a,(int64_t)i);
    }
    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init( Rep& a, const float i) const
    {
        return init(a,(double)i);
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::init ( Rep& r, const Integer& Residu ) const
    {
        int16_t tr;
        if (Residu <0) {
            // -a = b [p]
            // a = p-b [p]
            if ( Residu <= (Integer)(-_p) ) tr = int16_t( (-Residu) % _p) ;
            else tr = int16_t(-Residu);
            if (tr){
                assert(_p -(uint16_t)tr < _p);
                return r = _tab_value2rep[ _p - (uint16_t)tr ];
            }
            else
                return r = (Rep) zero;
        } else {
            if (Residu >= (Integer)_p ) tr =   int16_t(Residu % _p) ;
            else tr = int16_t(Residu);
            assert(tr < _p);
            return r = _tab_value2rep[tr];
        }
    }



    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::dotprod
    ( Rep& r, const int32_t bound, const size_t sz, constArray a, constArray b ) const
    {
        uint32_t stride = 1;
        if ((uint64_t)bound < GIVARO_MAXUINT16)
            stride = (uint32_t) ( GIVARO_MAXUINT32/((uint64_t)bound * (uint64_t)bound) );
        uint32_t dot = (uint32_t)zero;
        if ((sz <10) && (sz <stride)) {
            for(  size_t i= sz; i--; )
                dot += _tab_rep2value[a[i]] * _tab_rep2value[b[i]];
            if (dot > _p){
                assert( (Rep)(dot %_p) < _p);
                return r = _tab_value2rep[(Rep)(dot % _p)];
            }
            else {
                assert(dot < _p);
                return r = _tab_value2rep[dot];
            }

        }
        uint32_t i_begin=0;
        stride &= (uint32_t)~0x1;
        if (stride ==0) {
            for(  size_t i= sz-1; i>0; --i) {
                dot += _tab_rep2value[a[i]] * _tab_rep2value[b[i]];
                if (dot>_p) dot %= _p;
            }
            assert(dot < _p);
            return r = _tab_value2rep[dot];

        }
        do {
            size_t min_sz = ((sz-i_begin) < stride ? (sz-i_begin) : stride);
            if ( (min_sz & 0x1) !=0) {
                min_sz--; i_begin++;
                dot += _tab_rep2value[a++[min_sz]] * _tab_rep2value[b++[min_sz]];
            }
            if (min_sz > 1)
                for(  size_t i= min_sz; i>0; --i, --i, ++a, ++a, ++b, ++b )
                {
                    dot += _tab_rep2value[a[0]] * _tab_rep2value[b[0]];
                    dot += _tab_rep2value[a[1]] * _tab_rep2value[b[1]];
                }
            if (dot>_p) dot %= _p;
            i_begin += (uint32_t) min_sz;
        } while (i_begin <sz);
        assert(dot < _p);
        return r = _tab_value2rep[dot];
    }

    inline Modular<Log16, Log16>::Rep& Modular<Log16, Log16>::dotprod
    ( Rep& r, const size_t sz, constArray a, constArray b ) const
    {
        return Modular<Log16, Log16>::dotprod(r, _p, sz, a, b);
    }


    //  a -> r: int16_t to double
    inline void
    Modular<Log16, Log16>::i2d ( const size_t sz, double* r, constArray a ) const
    {
        for (size_t i=0; i<sz; ++i) r[i] = _tab_rep2value[a[i]];
    }

    //  a -> r: double to int16_t
    inline void
    Modular<Log16, Log16>::d2i ( const size_t sz, Array r, const double* a ) const
    {
        union d_2_l {
            double d;
            int32_t r[2];
        };
        static const double offset = 4503599627370496.0; // 2^52
        size_t i=sz-1;
        //warning todo while
        //do
label1:
        {
            d_2_l tmp;
            // - normalization: put fractional part at the end of the representation
            tmp.d = a[i] + offset;
            {
                assert((tmp.r[1] >=_p ? tmp.r[1] : tmp.r[1] % _p) < _p);
            }
            r[i--] = (Residu_t)_tab_value2rep[(tmp.r[1] >=_p ? tmp.r[1] : tmp.r[1] % _p)];
        }
        // while (i!=0)
        if (i >0) goto label1;
        //for (size_t i=sz-1; i>=0; --i)
    }


    // -- Input: (z, <_p>)
    inline std::istream& Modular<Log16, Log16>::read (std::istream& s)
    {
        char ch;
        s >> std::ws >> ch;
        //   if (ch != '(')
        //     GivError::throw_error( GivBadFormat("Modular<Log16, Log16>::read: syntax error: no '('"));
        if (ch != '(')
            std::cerr << "Modular<Log16, Log16>::read: syntax error: no '('" << std::endl;

        s >> std::ws >> ch;
        //   if (ch != 'z')
        //     GivError::throw_error( GivBadFormat("Modular<Log16, Log16>::read: bad domain object"));
        if (ch != 'z')
            std::cerr << "Modular<Log16, Log16>::read: bad domain object" << std::endl ;

        s >> std::ws >> ch;
        //   if (ch != ',')
        //     GivError::throw_error( GivBadFormat("Modular<Log16, Log16>::read: syntax error: no ','"));
        if (ch != ',')
            std::cerr << "Modular<Log16, Log16>::read: syntax error: no ','" << std::endl;


        s >> std::ws >> _p;

        s >> std::ws >> ch;
        //   if (ch != ')')
        //     GivError::throw_error( GivBadFormat("Modular<Log16, Log16>::read: syntax error: no ')'"));
        if (ch != ')')
            std::cerr << "Modular<Log16, Log16>::read: syntax error: no ')'" << std::endl;

        return s;
    }

    inline std::ostream& Modular<Log16, Log16>::write (std::ostream& s ) const
    {
        return s << "Modular<Log16> modulo " << residu();
    }

    inline std::istream& Modular<Log16, Log16>::read (std::istream& s, Rep& a) const
    {
        Integer tmp;
        s >> tmp;
        tmp %= _p;
        if (tmp < 0) tmp += _p;
        assert ( (uint)tmp < _p) ;
        a = _tab_value2rep[ (uint)tmp ];
        return s;
    }

    inline std::ostream& Modular<Log16, Log16>::write (std::ostream& s, const Rep a) const
    {
        if (a >= _p) return s << '0';
        return s << _tab_rep2value[a]; //dpritcha
    }

} // namespace Givaro

#endif // __GIVARO_modular_log16_INL

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s