/usr/include/recint/rudiv.h is in libgivaro-dev 4.0.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | /* ruint/arith.h - Arithmetic functions for ruint
Copyright Université Joseph Fourier - Grenoble
Contributors :
Alexis BREUST (alexis.breust@gmail.com 2014)
Christophe CHABOT (christophechabotcc@gmail.com 2011)
Jean-Guillaume DUMAS
Time-stamp: <20 Jun 12 10:28:29 Jean-Guillaume.Dumas@imag.fr>
This software is a computer program whose purpose is to provide an
fixed precision arithmetic library.
This software is governed by the CeCILL-B license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL-B
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL-B license and that you accept its terms.
*/
#ifndef RUINT_ARITH_DIV_H
#define RUINT_ARITH_DIV_H
#include "ruruint.h"
#include "rucmp.h"
#include "rushift.h" /* right_shift() */
// --------------------------------------------------------------
// ----------------------- DEFINTIONS ---------------------------
namespace RecInt
{
template <size_t K> ruint<K>& operator%=(ruint<K>&, const ruint<K>&);
template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) operator%=(ruint<K>&, const T&);
template <size_t K> ruint<K>& operator/=(ruint<K>&, const ruint<K>&);
template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>&) operator/=(ruint<K>&, const T&);
template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>&) operator/=(ruint<K>&, const T&);
template <size_t K> ruint<K> operator%(const ruint<K>&, const ruint<K>&);
template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>) operator%(const ruint<K>&, const T&);
template <size_t K> ruint<K> operator/(const ruint<K>&, const ruint<K>&);
template <size_t K, typename T> __RECINT_IS_UNSIGNED(T, ruint<K>) operator/(const ruint<K>&, const T&);
template <size_t K, typename T> __RECINT_IS_SIGNED(T, ruint<K>) operator/(const ruint<K>&, const T&);
// Euclidean division of the 3-ruint integer (a2|a1|a0) by the 2-ruint integer (b1|b0)
// the 1-ruint quotient is stored in q
// the 2-ruint remainder is stored in (r1|r0)
template <size_t K> void div_3_2(ruint<K>& q, ruint<K>& r1, ruint<K>& r0,
const ruint<K>& a2, const ruint<K>& a1, const ruint<K>& a0,
const ruint<K>& b1, const ruint<K>& b0);
// Euclidean division of the 2-ruint integer (a1|a0) by b
// q stores the quotient and r the remainder
template <size_t K> void div_2_1(ruint<K>& q, ruint<K>& r,
const ruint<K>& a1, const ruint<K>& a0,
const ruint<K>& b);
// computes (q, r) such that a = q*b + r (0 <= r < b)
template <size_t K> void div(ruint<K>& q, ruint<K>& r, const ruint<K>& a, const ruint<K>& b);
template <size_t K, typename T> __RECINT_IS_ARITH(T, void) div(ruint<K>& q, T& r, const ruint<K>& a, const T& b);
// q = floor(a/b)
template <size_t K> ruint<K>& div_q(ruint<K>& q, const ruint<K>& a, const ruint<K>& b);
template <size_t K, typename T> __RECINT_IS_ARITH(T, ruint<K>&) div_q(ruint<K>& q, const ruint<K>& a, const T& b);
// r = a mod b
template <size_t K> ruint<K>& div_r(ruint<K>& r, const ruint<K>& a, const ruint<K>& b);
template <size_t K, typename T> __RECINT_IS_ARITH(T, T&) div_r(T& r, const ruint<K>& a, const T& b);
}
// --------------------------------------------------------------
// ------------------------ Operators ---------------------------
namespace RecInt
{
// Operator %=
template <size_t K>
inline ruint<K>& operator%=(ruint<K>& a, const ruint<K>& b) {
return div_r(a, a, b);
}
template <size_t K, typename T>
inline __RECINT_IS_ARITH(T, ruint<K>&) operator%=(ruint<K>& a, const T& b) {
T aa;
div_r(aa, a, b);
return (a = aa);
}
// Operator /=
template <size_t K>
inline ruint<K>& operator/=(ruint<K>& a, const ruint<K>& b) {
return div_q(a, a, b);
}
template <size_t K, typename T>
inline __RECINT_IS_UNSIGNED(T, ruint<K>&) operator/=(ruint<K>& a, const T& b) {
return div_q(a, a, b);
}
template <size_t K, typename T>
inline __RECINT_IS_SIGNED(T, ruint<K>&) operator/=(ruint<K>& a, const T& b) {
if (b < 0) {
div_q(a, a, -b);
return (a = -a);
} else return div_q(a, a, b);
}
// Operator %
template <size_t K>
inline ruint<K> operator%(const ruint<K>& b, const ruint<K>& c) {
ruint<K> a;
div_r(a, b, c);
return a;
}
template <size_t K, typename T>
inline __RECINT_IS_ARITH(T, ruint<K>) operator%(const ruint<K>& b, const T& c) {
ruint<K> a;
T aa;
div_r(aa, b, c);
return (a = aa);
}
// Operator /
template <size_t K>
inline ruint<K> operator/(const ruint<K>& b, const ruint<K>& c) {
ruint<K> a;
div_q(a, b, c);
return a;
}
template <size_t K, typename T>
inline __RECINT_IS_UNSIGNED(T, ruint<K>) operator/(const ruint<K>& b, const T& c) {
ruint<K> a;
return div_q(a, b, c);
}
template <size_t K, typename T>
inline __RECINT_IS_SIGNED(T, ruint<K>) operator/(const ruint<K>& b, const T& c) {
ruint<K> a;
if (c < 0) {
div_q(a, b, -c);
return (a = -a);
} else return div_q(a, b, c);
}
}
// --------------------------------------------------------------
// ------------------------ Division ---------------------------
namespace RecInt
{
// Euclidean division of the 3-ruint integer (a2|a1|a0) by the 2-ruint integer (b1|b0)
// the 1-ruint quotient is stored in q
// the 2-ruint remainder is stored in (r1|r0)
template <size_t K> inline void div_3_2(ruint<K>& q, ruint<K>& r1, ruint<K>& r0,
const ruint<K>& a2, const ruint<K>& a1, const ruint<K>& a0,
const ruint<K>& b1, const ruint<K>& b0) {
ruint<K> c, d1, d0;
bool ret_sub, ret1 = false;
if (a2 < b1) {
div_2_1(q, c, a2, a1, b1);
} else {
fill_with_1(q);
add(ret1, c, a1, b1);
}
lmul(d1, d0, q, b0);
sub(ret_sub, r0, a0, d0);
sub_wc(r1, c, d1, ret_sub);
if ((ret1 == 0) && (d1 > c || (d1 == c && d0 > a0))) {
bool ret;
sub_1(q);
add(ret_sub, r0, b0);
add_wc(ret, r1, b1, ret_sub);
if (!ret) {
sub_1(q);
add(ret_sub, r0, b0);
add_wc(r1, b1, ret_sub);
}
}
}
template <>
inline void div_3_2(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r1, ruint<__RECINT_LIMB_SIZE>& r0,
const ruint<__RECINT_LIMB_SIZE>& a2, const ruint<__RECINT_LIMB_SIZE>& a1, const ruint<__RECINT_LIMB_SIZE>& a0,
const ruint<__RECINT_LIMB_SIZE>& b1, const ruint<__RECINT_LIMB_SIZE>& b0) {
limb c, d1, d0;
bool ret = false;
if (a2.Value < b1.Value) {
udiv_qrnnd(q.Value, c, a2.Value, a1.Value, b1.Value);
} else {
q.Value = __RECINT_MINUSONE;
c = a1.Value + b1.Value;
if (c < a1.Value)
ret = true;
}
umul_ppmm(d1, d0, q.Value, b0.Value);
sub_ddmmss(r1.Value, r0.Value, c, a0.Value, d1, d0);
if (!ret && ((d1 > c) || ((d1 == c) && (d0 > a0.Value)))) {
q.Value--;
r0.Value += b0.Value;
r1.Value += b1.Value;
if (r0.Value < b0.Value)
r1.Value++;
if ((r1.Value > b1.Value) || ((r1.Value == b1.Value) && (r0.Value >= b0.Value))) {
q.Value--;
r0.Value += b0.Value;
r1.Value += b1.Value;
if (r0.Value<b0.Value)
r1.Value++;
}
}
}
// Euclidean division of the 2-ruint integer (a1|a0) by b
// q stores the quotient and r the remainder
template <size_t K>
inline void div_2_1(ruint<K>& q, ruint<K>& r,
const ruint<K>& ah, const ruint<K>& al,
const ruint<K>& b) {
ruint<K> s;
div_3_2(q.High, s.High, s.Low, ah.High, ah.Low, al.High, b.High, b.Low);
div_3_2(q.Low, r.High, r.Low, s.High, s.Low, al.Low, b.High, b.Low);
}
template <>
inline void div_2_1(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r,
const ruint<__RECINT_LIMB_SIZE>& ah, const ruint<__RECINT_LIMB_SIZE>& al,
const ruint<__RECINT_LIMB_SIZE>& b) {
udiv_qrnnd(q.Value, r.Value, ah.Value, al.Value, b.Value);
}
// computes (q, r) such that a = q*b + r (0 <= r < b)
template <size_t K, typename T>
inline __RECINT_IS_ARITH(T, void) div(ruint<K>& q, T& r, const ruint<K>& a, const T& b) {
if (b == 2) {
bool z;
right_shift_1(z, q, a);
r = (z)? 1: 0;
} else {
ruint<K> bb(b), rr;
div(q, rr, a, bb);
r = static_cast<T>(rr);
}
}
// computes (q, r) such that a = q*b + r (0 <= r < b)
template <size_t K>
inline void div(ruint<K>& q, ruint<K>& r, const ruint<K>& a, const ruint<K>& b) {
UDItype d;
ruint<K+1> aa;
ruint<K> bb;
normalization(d, b);
left_shift(aa, a, d);
left_shift(bb, b, d);
div_2_1(q, r, aa.High, aa.Low, bb);
right_shift(r, r, d);
}
// computes (q, r) such that a = q*b + r (0 <= r < b)
// Note: with the correct option (-O), a good compiler should compute a/b and a%b with one call
struct sdiv { limb quot; limb rem; };
inline void udiv_qrnd(limb& q, limb& r, const limb& a, const limb& b) {
sdiv x{a/b, a%b};
q = x.quot; r = x.rem;
}
template <>
inline void div(ruint<__RECINT_LIMB_SIZE>& q, ruint<__RECINT_LIMB_SIZE>& r, const ruint<__RECINT_LIMB_SIZE>& a, const ruint<__RECINT_LIMB_SIZE>& b) {
udiv_qrnd(q.Value, r.Value, a.Value, b.Value);
}
// q = floor(a/b)
template <size_t K>
inline ruint<K>& div_q(ruint<K>& q, const ruint<K>& a, const ruint<K>& b) {
ruint<K> r;
div(q, r, a, b);
return q;
}
template <size_t K, typename T>
inline __RECINT_IS_ARITH(T, ruint<K>&) div_q(ruint<K>& q, const ruint<K>& a, const T& b) {
ruint<K> r, bb(b);
div(q, r, a, bb);
return q;
}
// r = a mod b
template <size_t K>
inline ruint<K>& div_r(ruint<K>& r, const ruint<K>& a, const ruint<K>& b) {
ruint<K> q;
div(q, r, a, b);
return r;
}
template <size_t K, typename T>
inline __RECINT_IS_ARITH(T, T&) div_r(T& r, const ruint<K>& a, const T& b) {
ruint<K> q;
div(q, r, a, b);
return r;
}
}
#endif
|