This file is indexed.

/usr/include/gromacs/math/vec.h is in libgromacs-dev 2016.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * This file is part of the GROMACS molecular simulation package.
 *
 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 * Copyright (c) 2001-2004, The GROMACS development team.
 * Copyright (c) 2013,2014,2015,2016, by the GROMACS development team, led by
 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
 * and including many others, as listed in the AUTHORS file in the
 * top-level source directory and at http://www.gromacs.org.
 *
 * GROMACS is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * GROMACS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with GROMACS; if not, see
 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 *
 * If you want to redistribute modifications to GROMACS, please
 * consider that scientific software is very special. Version
 * control is crucial - bugs must be traceable. We will be happy to
 * consider code for inclusion in the official distribution, but
 * derived work must not be called official GROMACS. Details are found
 * in the README & COPYING files - if they are missing, get the
 * official version at http://www.gromacs.org.
 *
 * To help us fund GROMACS development, we humbly ask that you cite
 * the research papers on the package. Check out http://www.gromacs.org.
 */
#ifndef GMX_MATH_VEC_H
#define GMX_MATH_VEC_H

/*
   collection of in-line ready operations:

   vector operations:
   void rvec_add(const rvec a,const rvec b,rvec c)  c = a + b
   void dvec_add(const dvec a,const dvec b,dvec c)  c = a + b
   void ivec_add(const ivec a,const ivec b,ivec c)  c = a + b
   void rvec_inc(rvec a,const rvec b)               a += b
   void dvec_inc(dvec a,const dvec b)               a += b
   void ivec_inc(ivec a,const ivec b)               a += b
   void rvec_sub(const rvec a,const rvec b,rvec c)  c = a - b
   void dvec_sub(const dvec a,const dvec b,dvec c)  c = a - b
   void rvec_dec(rvec a,rvec b)                     a -= b
   void copy_rvec(const rvec a,rvec b)              b = a (reals)
   void copy_dvec(const dvec a,dvec b)              b = a (reals)
   void copy_rvec_to_dvec(const rvec a,dvec b)      b = a (reals)
   void copy_dvec_to_rvec(const dvec a,rvec b)      b = a (reals)
   void copy_ivec(const ivec a,ivec b)              b = a (integers)
   void ivec_sub(const ivec a,const ivec b,ivec c)  c = a - b
   void svmul(real a,rvec v1,rvec v2)               v2 = a * v1
   void dsvmul(double a,dvec v1,dvec v2)            v2 = a * v1
   void clear_rvec(rvec a)                          a = 0
   void clear_dvec(dvec a)                          a = 0
   void clear_ivec(rvec a)                          a = 0
   void clear_rvecs(int n,rvec v[])
   real iprod(rvec a,rvec b)                        = a . b (inner product)
   double diprod(dvec a,dvec b)                     = a . b (inner product)
   real iiprod(ivec a,ivec b)                       = a . b (integers)
   real norm2(rvec a)                               = | a |^2 ( = x*y*z )
   double dnorm2(dvec a)                            = | a |^2 ( = x*y*z )
   real norm(rvec a)                                = | a |
   double dnorm(dvec a)                             = | a |
   void cprod(rvec a,rvec b,rvec c)                 c = a x b (cross product)
   void dcprod(dvec a,dvec b,dvec c)                c = a x b (cross product)
   void dprod(rvec a,rvec b,rvec c)                 c = a * b (direct product)
   real cos_angle(rvec a,rvec b)
   real distance2(rvec v1, rvec v2)                 = | v2 - v1 |^2
   void unitv(rvec src,rvec dest)                   dest = src / |src|

   matrix (3x3) operations:
    ! indicates that dest should not be the same as a, b or src
    the _ur0 varieties work on matrices that have only zeros
    in the upper right part, such as box matrices, these varieties
    could produce less rounding errors, not due to the operations themselves,
    but because the compiler can easier recombine the operations
   void copy_mat(matrix a,matrix b)                 b = a
   void clear_mat(matrix a)                         a = 0
   void mmul(matrix a,matrix b,matrix dest)      !  dest = a . b
   void mmul_ur0(matrix a,matrix b,matrix dest)     dest = a . b
   void transpose(matrix src,matrix dest)        !  dest = src*
   void tmmul(matrix a,matrix b,matrix dest)     !  dest = a* . b
   void mtmul(matrix a,matrix b,matrix dest)     !  dest = a . b*
   real det(matrix a)                               = det(a)
   void m_add(matrix a,matrix b,matrix dest)        dest = a + b
   void m_sub(matrix a,matrix b,matrix dest)        dest = a - b
   void msmul(matrix m1,real r1,matrix dest)        dest = r1 * m1
   void mvmul(matrix a,rvec src,rvec dest)       !  dest = a . src
   void mvmul_ur0(matrix a,rvec src,rvec dest)      dest = a . src
   void tmvmul_ur0(matrix a,rvec src,rvec dest)     dest = a* . src
   real trace(matrix m)                             = trace(m)
 */

#include <cmath>

#include "gromacs/math/functions.h"
#include "gromacs/math/vectypes.h"
#include "gromacs/utility/real.h"

static inline void rvec_add(const rvec a, const rvec b, rvec c)
{
    real x, y, z;

    x = a[XX]+b[XX];
    y = a[YY]+b[YY];
    z = a[ZZ]+b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void dvec_add(const dvec a, const dvec b, dvec c)
{
    double x, y, z;

    x = a[XX]+b[XX];
    y = a[YY]+b[YY];
    z = a[ZZ]+b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void ivec_add(const ivec a, const ivec b, ivec c)
{
    int x, y, z;

    x = a[XX]+b[XX];
    y = a[YY]+b[YY];
    z = a[ZZ]+b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void rvec_inc(rvec a, const rvec b)
{
    real x, y, z;

    x = a[XX]+b[XX];
    y = a[YY]+b[YY];
    z = a[ZZ]+b[ZZ];

    a[XX] = x;
    a[YY] = y;
    a[ZZ] = z;
}

static inline void dvec_inc(dvec a, const dvec b)
{
    double x, y, z;

    x = a[XX]+b[XX];
    y = a[YY]+b[YY];
    z = a[ZZ]+b[ZZ];

    a[XX] = x;
    a[YY] = y;
    a[ZZ] = z;
}

static inline void rvec_sub(const rvec a, const rvec b, rvec c)
{
    real x, y, z;

    x = a[XX]-b[XX];
    y = a[YY]-b[YY];
    z = a[ZZ]-b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void dvec_sub(const dvec a, const dvec b, dvec c)
{
    double x, y, z;

    x = a[XX]-b[XX];
    y = a[YY]-b[YY];
    z = a[ZZ]-b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void rvec_dec(rvec a, const rvec b)
{
    real x, y, z;

    x = a[XX]-b[XX];
    y = a[YY]-b[YY];
    z = a[ZZ]-b[ZZ];

    a[XX] = x;
    a[YY] = y;
    a[ZZ] = z;
}

static inline void copy_rvec(const rvec a, rvec b)
{
    b[XX] = a[XX];
    b[YY] = a[YY];
    b[ZZ] = a[ZZ];
}

static inline void copy_rvec_to_dvec(const rvec a, dvec b)
{
    b[XX] = a[XX];
    b[YY] = a[YY];
    b[ZZ] = a[ZZ];
}

static inline void copy_dvec_to_rvec(const dvec a, rvec b)
{
    b[XX] = a[XX];
    b[YY] = a[YY];
    b[ZZ] = a[ZZ];
}

static inline void copy_rvecn(const rvec *a, rvec *b, int startn, int endn)
{
    int i;
    for (i = startn; i < endn; i++)
    {
        b[i][XX] = a[i][XX];
        b[i][YY] = a[i][YY];
        b[i][ZZ] = a[i][ZZ];
    }
}

static inline void copy_dvec(const dvec a, dvec b)
{
    b[XX] = a[XX];
    b[YY] = a[YY];
    b[ZZ] = a[ZZ];
}

static inline void copy_ivec(const ivec a, ivec b)
{
    b[XX] = a[XX];
    b[YY] = a[YY];
    b[ZZ] = a[ZZ];
}

static inline void ivec_sub(const ivec a, const ivec b, ivec c)
{
    int x, y, z;

    x = a[XX]-b[XX];
    y = a[YY]-b[YY];
    z = a[ZZ]-b[ZZ];

    c[XX] = x;
    c[YY] = y;
    c[ZZ] = z;
}

static inline void copy_mat(const matrix a, matrix b)
{
    copy_rvec(a[XX], b[XX]);
    copy_rvec(a[YY], b[YY]);
    copy_rvec(a[ZZ], b[ZZ]);
}

static inline void svmul(real a, const rvec v1, rvec v2)
{
    v2[XX] = a*v1[XX];
    v2[YY] = a*v1[YY];
    v2[ZZ] = a*v1[ZZ];
}

static inline void dsvmul(double a, const dvec v1, dvec v2)
{
    v2[XX] = a*v1[XX];
    v2[YY] = a*v1[YY];
    v2[ZZ] = a*v1[ZZ];
}

static inline real distance2(const rvec v1, const rvec v2)
{
    return gmx::square(v2[XX]-v1[XX]) + gmx::square(v2[YY]-v1[YY]) + gmx::square(v2[ZZ]-v1[ZZ]);
}

static inline void clear_rvec(rvec a)
{
    /* The ibm compiler has problems with inlining this
     * when we use a const real variable
     */
    a[XX] = 0.0;
    a[YY] = 0.0;
    a[ZZ] = 0.0;
}

static inline void clear_dvec(dvec a)
{
    /* The ibm compiler has problems with inlining this
     * when we use a const real variable
     */
    a[XX] = 0.0;
    a[YY] = 0.0;
    a[ZZ] = 0.0;
}

static inline void clear_ivec(ivec a)
{
    a[XX] = 0;
    a[YY] = 0;
    a[ZZ] = 0;
}

static inline void clear_rvecs(int n, rvec v[])
{
    int i;

    for (i = 0; (i < n); i++)
    {
        clear_rvec(v[i]);
    }
}

static inline void clear_mat(matrix a)
{
    const real nul = 0.0;

    a[XX][XX] = a[XX][YY] = a[XX][ZZ] = nul;
    a[YY][XX] = a[YY][YY] = a[YY][ZZ] = nul;
    a[ZZ][XX] = a[ZZ][YY] = a[ZZ][ZZ] = nul;
}

static inline real iprod(const rvec a, const rvec b)
{
    return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}

static inline double diprod(const dvec a, const dvec b)
{
    return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}

static inline int iiprod(const ivec a, const ivec b)
{
    return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}

static inline real norm2(const rvec a)
{
    return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
}

static inline double dnorm2(const dvec a)
{
    return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
}

/* WARNING:
 * As dnorm() uses sqrt() (which is slow) _only_ use it if you are sure you
 * don't need 1/dnorm(), otherwise use dnorm2()*dinvnorm(). */
static inline double dnorm(const dvec a)
{
    return std::sqrt(diprod(a, a));
}

/* WARNING:
 * As norm() uses sqrt() (which is slow) _only_ use it if you are sure you
 * don't need 1/norm(), otherwise use norm2()*invnorm(). */
static inline real norm(const rvec a)
{
    return std::sqrt(iprod(a, a));
}

static inline real invnorm(const rvec a)
{
    return gmx::invsqrt(norm2(a));
}

static inline real dinvnorm(const dvec a)
{
    return gmx::invsqrt(dnorm2(a));
}

/* WARNING:
 * Do _not_ use these routines to calculate the angle between two vectors
 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
 * is very flat close to -1 and 1, which will lead to accuracy-loss.
 * Instead, use the new gmx_angle() function directly.
 */
static inline real cos_angle(const rvec a, const rvec b)
{
    /*
     *                  ax*bx + ay*by + az*bz
     * cos-vec (a,b) =  ---------------------
     *                      ||a|| * ||b||
     */
    real   cosval;
    int    m;
    double aa, bb, ip, ipa, ipb, ipab; /* For accuracy these must be double! */

    ip = ipa = ipb = 0.0;
    for (m = 0; (m < DIM); m++) /* 18 */
    {
        aa   = a[m];
        bb   = b[m];
        ip  += aa*bb;
        ipa += aa*aa;
        ipb += bb*bb;
    }
    ipab = ipa*ipb;
    if (ipab > 0)
    {
        cosval = ip*gmx::invsqrt(ipab);  /*  7 */
    }
    else
    {
        cosval = 1;
    }
    /* 25 TOTAL */
    if (cosval > 1.0)
    {
        return 1.0;
    }
    if (cosval < -1.0)
    {
        return -1.0;
    }

    return cosval;
}

static inline void cprod(const rvec a, const rvec b, rvec c)
{
    c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
    c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
    c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
}

static inline void dcprod(const dvec a, const dvec b, dvec c)
{
    c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
    c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
    c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
}

/* This routine calculates the angle between a & b without any loss of accuracy close to 0/PI.
 * If you only need cos(theta), use the cos_angle() routines to save a few cycles.
 * This routine is faster than it might appear, since atan2 is accelerated on many CPUs (e.g. x86).
 */
static inline real gmx_angle(const rvec a, const rvec b)
{
    rvec w;
    real wlen, s;

    cprod(a, b, w);

    wlen  = norm(w);
    s     = iprod(a, b);

    return std::atan2(wlen, s);
}

static inline double gmx_angle_between_dvecs(const dvec a, const dvec b)
{
    dvec   w;
    double wlen, s;

    dcprod(a, b, w);

    wlen  = dnorm(w);
    s     = diprod(a, b);

    return std::atan2(wlen, s);
}

static inline void mmul_ur0(const matrix a, const matrix b, matrix dest)
{
    dest[XX][XX] = a[XX][XX]*b[XX][XX];
    dest[XX][YY] = 0.0;
    dest[XX][ZZ] = 0.0;
    dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX];
    dest[YY][YY] =                     a[YY][YY]*b[YY][YY];
    dest[YY][ZZ] = 0.0;
    dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
    dest[ZZ][YY] =                     a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
    dest[ZZ][ZZ] =                                         a[ZZ][ZZ]*b[ZZ][ZZ];
}

static inline void mmul(const matrix a, const matrix b, matrix dest)
{
    dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[YY][XX]+a[XX][ZZ]*b[ZZ][XX];
    dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[YY][ZZ]*b[ZZ][XX];
    dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
    dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[ZZ][YY];
    dest[YY][YY] = a[YY][XX]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[ZZ][YY];
    dest[ZZ][YY] = a[ZZ][XX]*b[XX][YY]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
    dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[XX][YY]*b[YY][ZZ]+a[XX][ZZ]*b[ZZ][ZZ];
    dest[YY][ZZ] = a[YY][XX]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[YY][ZZ]*b[ZZ][ZZ];
    dest[ZZ][ZZ] = a[ZZ][XX]*b[XX][ZZ]+a[ZZ][YY]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
}

static inline void transpose(const matrix src, matrix dest)
{
    dest[XX][XX] = src[XX][XX];
    dest[YY][XX] = src[XX][YY];
    dest[ZZ][XX] = src[XX][ZZ];
    dest[XX][YY] = src[YY][XX];
    dest[YY][YY] = src[YY][YY];
    dest[ZZ][YY] = src[YY][ZZ];
    dest[XX][ZZ] = src[ZZ][XX];
    dest[YY][ZZ] = src[ZZ][YY];
    dest[ZZ][ZZ] = src[ZZ][ZZ];
}

static inline void tmmul(const matrix a, const matrix b, matrix dest)
{
    /* Computes dest=mmul(transpose(a),b,dest) - used in do_pr_pcoupl */
    dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[YY][XX]*b[YY][XX]+a[ZZ][XX]*b[ZZ][XX];
    dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[YY][XX]*b[YY][YY]+a[ZZ][XX]*b[ZZ][YY];
    dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[YY][XX]*b[YY][ZZ]+a[ZZ][XX]*b[ZZ][ZZ];
    dest[YY][XX] = a[XX][YY]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[ZZ][YY]*b[ZZ][XX];
    dest[YY][YY] = a[XX][YY]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[ZZ][YY]*b[ZZ][YY];
    dest[YY][ZZ] = a[XX][YY]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[ZZ][YY]*b[ZZ][ZZ];
    dest[ZZ][XX] = a[XX][ZZ]*b[XX][XX]+a[YY][ZZ]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
    dest[ZZ][YY] = a[XX][ZZ]*b[XX][YY]+a[YY][ZZ]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
    dest[ZZ][ZZ] = a[XX][ZZ]*b[XX][ZZ]+a[YY][ZZ]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
}

static inline void mtmul(const matrix a, const matrix b, matrix dest)
{
    /* Computes dest=mmul(a,transpose(b),dest) - used in do_pr_pcoupl */
    dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[XX][YY]+a[XX][ZZ]*b[XX][ZZ];
    dest[XX][YY] = a[XX][XX]*b[YY][XX]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[YY][ZZ];
    dest[XX][ZZ] = a[XX][XX]*b[ZZ][XX]+a[XX][YY]*b[ZZ][YY]+a[XX][ZZ]*b[ZZ][ZZ];
    dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[XX][YY]+a[YY][ZZ]*b[XX][ZZ];
    dest[YY][YY] = a[YY][XX]*b[YY][XX]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[YY][ZZ];
    dest[YY][ZZ] = a[YY][XX]*b[ZZ][XX]+a[YY][YY]*b[ZZ][YY]+a[YY][ZZ]*b[ZZ][ZZ];
    dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[XX][YY]+a[ZZ][ZZ]*b[XX][ZZ];
    dest[ZZ][YY] = a[ZZ][XX]*b[YY][XX]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[YY][ZZ];
    dest[ZZ][ZZ] = a[ZZ][XX]*b[ZZ][XX]+a[ZZ][YY]*b[ZZ][YY]+a[ZZ][ZZ]*b[ZZ][ZZ];
}

static inline real det(const matrix a)
{
    return ( a[XX][XX]*(a[YY][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[YY][ZZ])
             -a[YY][XX]*(a[XX][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[XX][ZZ])
             +a[ZZ][XX]*(a[XX][YY]*a[YY][ZZ]-a[YY][YY]*a[XX][ZZ]));
}


static inline void m_add(const matrix a, const matrix b, matrix dest)
{
    dest[XX][XX] = a[XX][XX]+b[XX][XX];
    dest[XX][YY] = a[XX][YY]+b[XX][YY];
    dest[XX][ZZ] = a[XX][ZZ]+b[XX][ZZ];
    dest[YY][XX] = a[YY][XX]+b[YY][XX];
    dest[YY][YY] = a[YY][YY]+b[YY][YY];
    dest[YY][ZZ] = a[YY][ZZ]+b[YY][ZZ];
    dest[ZZ][XX] = a[ZZ][XX]+b[ZZ][XX];
    dest[ZZ][YY] = a[ZZ][YY]+b[ZZ][YY];
    dest[ZZ][ZZ] = a[ZZ][ZZ]+b[ZZ][ZZ];
}

static inline void m_sub(const matrix a, const matrix b, matrix dest)
{
    dest[XX][XX] = a[XX][XX]-b[XX][XX];
    dest[XX][YY] = a[XX][YY]-b[XX][YY];
    dest[XX][ZZ] = a[XX][ZZ]-b[XX][ZZ];
    dest[YY][XX] = a[YY][XX]-b[YY][XX];
    dest[YY][YY] = a[YY][YY]-b[YY][YY];
    dest[YY][ZZ] = a[YY][ZZ]-b[YY][ZZ];
    dest[ZZ][XX] = a[ZZ][XX]-b[ZZ][XX];
    dest[ZZ][YY] = a[ZZ][YY]-b[ZZ][YY];
    dest[ZZ][ZZ] = a[ZZ][ZZ]-b[ZZ][ZZ];
}

static inline void msmul(const matrix m1, real r1, matrix dest)
{
    dest[XX][XX] = r1*m1[XX][XX];
    dest[XX][YY] = r1*m1[XX][YY];
    dest[XX][ZZ] = r1*m1[XX][ZZ];
    dest[YY][XX] = r1*m1[YY][XX];
    dest[YY][YY] = r1*m1[YY][YY];
    dest[YY][ZZ] = r1*m1[YY][ZZ];
    dest[ZZ][XX] = r1*m1[ZZ][XX];
    dest[ZZ][YY] = r1*m1[ZZ][YY];
    dest[ZZ][ZZ] = r1*m1[ZZ][ZZ];
}

static inline void mvmul(const matrix a, const rvec src, rvec dest)
{
    dest[XX] = a[XX][XX]*src[XX]+a[XX][YY]*src[YY]+a[XX][ZZ]*src[ZZ];
    dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY]+a[YY][ZZ]*src[ZZ];
    dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
}


static inline void mvmul_ur0(const matrix a, const rvec src, rvec dest)
{
    dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
    dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY];
    dest[XX] = a[XX][XX]*src[XX];
}

static inline void tmvmul_ur0(const matrix a, const rvec src, rvec dest)
{
    dest[XX] = a[XX][XX]*src[XX]+a[YY][XX]*src[YY]+a[ZZ][XX]*src[ZZ];
    dest[YY] =                   a[YY][YY]*src[YY]+a[ZZ][YY]*src[ZZ];
    dest[ZZ] =                                     a[ZZ][ZZ]*src[ZZ];
}

static inline void unitv(const rvec src, rvec dest)
{
    real linv;

    linv     = gmx::invsqrt(norm2(src));
    dest[XX] = linv*src[XX];
    dest[YY] = linv*src[YY];
    dest[ZZ] = linv*src[ZZ];
}

static inline real trace(const matrix m)
{
    return (m[XX][XX]+m[YY][YY]+m[ZZ][ZZ]);
}

#endif