This file is indexed.

/usr/include/gromacs/pbcutil/pbc.h is in libgromacs-dev 2016.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
 * This file is part of the GROMACS molecular simulation package.
 *
 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 * Copyright (c) 2001-2004, The GROMACS development team.
 * Copyright (c) 2012,2014,2015, by the GROMACS development team, led by
 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
 * and including many others, as listed in the AUTHORS file in the
 * top-level source directory and at http://www.gromacs.org.
 *
 * GROMACS is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * GROMACS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with GROMACS; if not, see
 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 *
 * If you want to redistribute modifications to GROMACS, please
 * consider that scientific software is very special. Version
 * control is crucial - bugs must be traceable. We will be happy to
 * consider code for inclusion in the official distribution, but
 * derived work must not be called official GROMACS. Details are found
 * in the README & COPYING files - if they are missing, get the
 * official version at http://www.gromacs.org.
 *
 * To help us fund GROMACS development, we humbly ask that you cite
 * the research papers on the package. Check out http://www.gromacs.org.
 */
#ifndef GMX_PBCUTIL_PBC_H
#define GMX_PBCUTIL_PBC_H

#include <stdio.h>

#include "gromacs/math/vectypes.h"
#include "gromacs/utility/basedefinitions.h"
#include "gromacs/utility/real.h"

struct gmx_domdec_t;
struct t_inputrec;

#ifdef __cplusplus
extern "C" {
#endif

enum {
    epbcXYZ, epbcNONE, epbcXY, epbcSCREW, epbcNR
};

//! Strings corresponding to epbc enum values.
extern const char *epbc_names[epbcNR+1];

/* Maximum number of combinations of single triclinic box vectors
 * required to shift atoms that are within a brick of the size of
 * the diagonal of the box to within the maximum cut-off distance.
 */
#define MAX_NTRICVEC 12

/*! \brief Structure containing info on periodic boundary conditions */
typedef struct t_pbc {
    //! The PBC type
    int        ePBC;
    //! Number of dimensions in which PBC is exerted
    int        ndim_ePBC;
    /*! \brief Determines how to compute distance vectors.
     *
     *  Indicator of how to compute distance vectors, depending
     *  on PBC type (depends on ePBC and dimensions with(out) DD)
     *  and the box angles.
     */
    int        ePBCDX;
    /*! \brief Used for selecting which dimensions to use in PBC.
     *
     *  In case of 1-D PBC this indicates which dimension is used,
     *  in case of 2-D PBC this indicates the opposite
     */
    int        dim;
    //! The simulation box
    matrix     box;
    //! The lengths of the diagonal of the full box
    rvec       fbox_diag;
    //! Halve of the above
    rvec       hbox_diag;
    //! Negative of the above
    rvec       mhbox_diag;
    //! Maximum allowed cutoff squared for the box and PBC used
    real       max_cutoff2;
    /*! \brief Number of triclinic shift vectors.
     *
     *  Number of triclinic shift vectors depends on the skewedness
     *  of the box, that is mostly on the angles. For triclinic boxes
     *  we first take the closest image along each Cartesian dimension
     *  independently. When the resulting distance^2 is larger than
     *  max_cutoff2, up to ntric_vec triclinic shift vectors need to
     *  be tried. Because of the restrictions imposed on the unit-cell
     *  by GROMACS, ntric_vec <= MAX_NTRICVEC = 12.
     */
    int        ntric_vec;
    //! The triclinic shift vectors in grid cells. Internal use only.
    ivec       tric_shift[MAX_NTRICVEC];
    //!  The triclinic shift vectors in length units
    rvec       tric_vec[MAX_NTRICVEC];
} t_pbc;

#define TRICLINIC(box) (box[YY][XX] != 0 || box[ZZ][XX] != 0 || box[ZZ][YY] != 0)

#define NTRICIMG 14
#define NCUCVERT 24
#define NCUCEDGE 36

enum {
    ecenterTRIC, /* 0.5*(a+b+c)                  */
    ecenterRECT, /* (0.5*a[x],0.5*b[y],0.5*c[z]) */
    ecenterZERO, /* (0,0,0)                      */
    ecenterDEF = ecenterTRIC
};

struct t_graph;

/*! \brief Returns the number of dimensions that use pbc
 *
 * \param[in] ePBC The periodic boundary condition type
 * \return the number of dimensions that use pbc, starting at X
 */
int ePBC2npbcdim(int ePBC);

/*! \brief Return the number of bounded directories
 *
 * \param[in] ir The input record with MD parameters
 * \return the number of dimensions in which
 * the coordinates of the particles are bounded, starting at X.
 */
int inputrec2nboundeddim(const t_inputrec *ir);

/*! \brief Dump the contents of the pbc structure to the file
 *
 * \param[in] fp  The file pointer to write to
 * \param[in] pbc The periodic boundary condition information structure
 */
void dump_pbc(FILE *fp, t_pbc *pbc);

/*! \brief Check the box for consistency
 *
 * \param[in] ePBC The pbc identifier
 * \param[in] box  The box matrix
 * \return NULL if the box is supported by Gromacs.
 * Otherwise returns a string with the problem.
 * When ePBC=-1, the type of pbc is guessed from the box matrix.
 */
const char *check_box(int ePBC, const matrix box);

/*! \brief Creates box matrix from edge lengths and angles. */
void matrix_convert(matrix box, const rvec vec, const rvec angleInDegrees);

/*! \brief Compute the maximum cutoff for the box

 * Returns the square of the maximum cut-off allowed for the box,
 * taking into account that the grid neighborsearch code and pbc_dx
 * only check combinations of single box-vector shifts.
 * \param[in] ePBC The pbc identifier
 * \param[in] box  The box matrix
 * \return the maximum cut-off.
 */
real max_cutoff2(int ePBC, const matrix box);

/*! \brief Guess PBC typr
 *
 * Guesses the type of periodic boundary conditions using the box
 * \param[in] box  The box matrix
 * \return The pbc identifier
 */
int guess_ePBC(const matrix box);

/*! \brief Corrects the box if necessary
 *
 * Checks for un-allowed box angles and corrects the box
 * and the integer shift vectors in the graph (if graph!=NULL) if necessary.
 * \param[in] fplog File for debug output
 * \param[in] step  The MD step number
 * \param[in] box   The simulation cell
 * \param[in] graph Information about molecular connectivity
 * \return TRUE when the box was corrected.
 */
gmx_bool correct_box(FILE *fplog, int step, tensor box, struct t_graph *graph);

/*! \brief Returns the number of degrees of freedom in center of mass motion
 *
 * \param[in] ir the inputrec structure
 * \return the number of degrees of freedom of the center of mass
 */
int ndof_com(t_inputrec *ir);

/*! \brief Initiate the periodic boundary condition algorithms.
 *
 * pbc_dx will not use pbc and return the normal difference vector
 * when one or more of the diagonal elements of box are zero.
 * When ePBC=-1, the type of pbc is guessed from the box matrix.
 * \param[inout] pbc The pbc information structure
 * \param[in] ePBC The PBC identifier
 * \param[in] box  The box tensor
 */
void set_pbc(t_pbc *pbc, int ePBC, const matrix box);

/*! \brief Initiate the periodic boundary condition algorithms.
 *
 * As set_pbc, but additionally sets that correct distances can
 * be obtained using (combinations of) single box-vector shifts.
 * Should be used with pbc_dx_aiuc.
 * If domdecCells!=NULL pbc is not used for directions
 * with dd->nc[i]==1 with bSingleDir==TRUE or
 * with dd->nc[i]<=2 with bSingleDir==FALSE.
 * Note that when no PBC is required only pbc->ePBC is set,
 * the rest of the struct will be invalid.
 * \param[inout] pbc The pbc information structure
 * \param[in] ePBC        The PBC identifier
 * \param[in] domdecCells 3D integer vector describing the number of DD cells
 *                        or nullptr if not using DD.
 * \param[in] bSingleDir  TRUE if DD communicates only in one direction along dimensions
 * \param[in] box         The box tensor
 * \return the pbc structure when pbc operations are required, NULL otherwise.
 */
t_pbc *set_pbc_dd(t_pbc *pbc, int ePBC,
                  const ivec domdecCells, gmx_bool bSingleDir,
                  const matrix box);

/*! \brief Compute distance with PBC
 *
 * Calculate the correct distance vector from x2 to x1 and put it in dx.
 * set_pbc must be called before ever calling this routine.
 *
 * Note that for triclinic boxes that do not obey the GROMACS unit-cell
 * restrictions, pbc_dx and pbc_dx_aiuc will not correct for PBC.
 * \param[inout] pbc The pbc information structure
 * \param[in]    x1  Coordinates for particle 1
 * \param[in]    x2  Coordinates for particle 2
 * \param[out]   dx  Distance vector
 */
void pbc_dx(const t_pbc *pbc, const rvec x1, const rvec x2, rvec dx);

/*! \brief Compute distance vector for simple PBC types
 *
 * Calculate the correct distance vector from x2 to x1 and put it in dx,
 * This function can only be used when all atoms are in the rectangular
 * or triclinic unit-cell.
 * set_pbc_dd or set_pbc must be called before ever calling this routine.
 * \param[inout] pbc The pbc information structure
 * \param[in]    x1  Coordinates for particle 1
 * \param[in]    x2  Coordinates for particle 2
 * \param[out]   dx  Distance vector
 * \return the ishift required to shift x1 at closest distance to x2;
 * i.e. if 0<=ishift<SHIFTS then x1 - x2 + shift_vec[ishift] = dx
 * (see calc_shifts below on how to obtain shift_vec)
 */
int pbc_dx_aiuc(const t_pbc *pbc, const rvec x1, const rvec x2, rvec dx);

/*\brief Compute distance with PBC
 *
 * As pbc_dx, but for double precision vectors.
 * set_pbc must be called before ever calling this routine.
 * \param[inout] pbc The pbc information structure
 * \param[in]    x1  Coordinates for particle 1
 * \param[in]    x2  Coordinates for particle 2
 * \param[out]   dx  Distance vector
 */
void pbc_dx_d(const t_pbc *pbc, const dvec x1, const dvec x2, dvec dx);

/*! \brief Calculate the distance between xi and xj for a rectangular box.
 *
 * It is assumed that rlong2 is scaled the same way as the ivecs xi and xj.
 * \param[in]  xi     Box index
 * \param[in]  xj     Box index
 * \param[in]  box    The box of grid cells
 * \param[in]  rlong2 Cutoff squared
 * \param[out] shift  The shift code
 * \param[out] r2     The distance (squared???)
 * \return TRUE when the distance is SMALLER than rlong2
 */
gmx_bool image_rect(ivec xi, ivec xj, imatrix box,
                    real rlong2, int *shift, real *r2);

/*! \brief Calculate the distance between xi and xj for a triclinic box.
 *
 * It is assumed that rlong2 is scaled the same way as the ivecs xi and xj.
 * \param[in]  xi     Box index
 * \param[in]  xj     Box index
 * \param[in]  box    Matrix of box grid cells
 * \param[in]  rlong2 Cutoff squared
 * \param[out] shift  The shift code
 * \param[out] r2     The distance (squared???)
 * \return TRUE when the distance is SMALLER than rlong2
 */
gmx_bool image_tri(const ivec xi, const ivec xj, const imatrix box,
                   real rlong2, int *shift, real *r2);

/*! \brief Compute distance vector when using cylindrical cutoff
 *
 * Calculate the distance between xi and xj for a rectangular box
 * using a cylindric cutoff for long-range only.
 * It is assumed that rlong2 is scaled the same way as the ivecs xi and xj.
 * \param[in]  xi       Box index
 * \param[in]  xj       Box index
 * \param[in]  box_size Number of box grid cells
 * \param[in]  rlong2   Cutoff squared
 * \param[out] shift    The shift code
 * \param[out] r2       The distance (squared???)
 * \return TRUE when the distance is SMALLER than rlong2 (in X and Y dir)
 */
gmx_bool image_cylindric(const ivec xi, const ivec xj, const ivec box_size,
                         real rlong2, int *shift, real *r2);

/*! \brief Computes shift vectors
 *
 * This routine calculates ths shift vectors necessary to use the
 * neighbor searching routine.
 * \param[in]  box       The simulation box
 * \param[out] shift_vec The shifting vectors
 */
void calc_shifts(const matrix box, rvec shift_vec[]);

/*! \brief Calculates the center of the box.
 *
 * See the description for the enum ecenter above.
 * \param[in]  ecenter    Description of center type
 * \param[in]  box        The simulation box
 * \param[out] box_center The center of the box
 */
void calc_box_center(int ecenter, const matrix box, rvec box_center);

/*! \brief Calculates the NTRICIMG box images
 *
 * \param[in]  box The simulation box
 * \param[out] img The triclinic box images
 */
void calc_triclinic_images(const matrix box, rvec img[]);

/*! \brief Calculates the NCUCVERT vertices of a compact unitcell
 *
 * \param[in]  ecenter The center type
 * \param[in]  box     The simulation box
 * \param[out] vert    The vertices
 */
void calc_compact_unitcell_vertices(int ecenter, const matrix box,
                                    rvec vert[]);

/*! \brief Compute unitcell edges
 *
 * \return an array of unitcell edges of length NCUCEDGE*2,
 * this is an index in vert[], which is calculated by calc_unitcell_vertices.
 * The index consists of NCUCEDGE pairs of vertex indices.
 * The index does not change, so it needs to be retrieved only once.
 */
int *compact_unitcell_edges(void);

/*! \brief Put atoms inside the simulations box
 *
 * These routines puts ONE or ALL atoms in the box, not caring
 * about charge groups!
 * Also works for triclinic cells.
 * \param[in]    ePBC   The pbc type
 * \param[in]    box    The simulation box
 * \param[in]    natoms The number of atoms
 * \param[inout] x      The coordinates of the atoms
 */
void put_atoms_in_box(int ePBC, const matrix box, int natoms, rvec x[]);

/*! \brief Put atoms inside triclinic box
 *
 * This puts ALL atoms in the triclinic unit cell, centered around the
 * box center as calculated by calc_box_center.
 * \param[in]    ecenter The pbc center type
 * \param[in]    box     The simulation box
 * \param[in]    natoms  The number of atoms
 * \param[inout] x       The coordinates of the atoms
 */
void put_atoms_in_triclinic_unitcell(int ecenter, const matrix box,
                                     int natoms, rvec x[]);

/*! \brief Put atoms inside the unitcell
 *
 * This puts ALL atoms at the closest distance for the center of the box
 * as calculated by calc_box_center.
 * When ePBC=-1, the type of pbc is guessed from the box matrix.
 * \param[in]    ePBC    The pbc type
 * \param[in]    ecenter The pbc center type
 * \param[in]    box     The simulation box
 * \param[in]    natoms  The number of atoms
 * \param[inout] x       The coordinates of the atoms
 */
void put_atoms_in_compact_unitcell(int ePBC, int ecenter,
                                   const matrix box,
                                   int natoms, rvec x[]);

#ifdef __cplusplus
}
#endif

#endif