This file is indexed.

/usr/include/gromacs/random/gammadistribution.h is in libgromacs-dev 2016.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * This file is part of the GROMACS molecular simulation package.
 *
 * Copyright (c) 2015,2016, by the GROMACS development team, led by
 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
 * and including many others, as listed in the AUTHORS file in the
 * top-level source directory and at http://www.gromacs.org.
 *
 * GROMACS is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * GROMACS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with GROMACS; if not, see
 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 *
 * If you want to redistribute modifications to GROMACS, please
 * consider that scientific software is very special. Version
 * control is crucial - bugs must be traceable. We will be happy to
 * consider code for inclusion in the official distribution, but
 * derived work must not be called official GROMACS. Details are found
 * in the README & COPYING files - if they are missing, get the
 * official version at http://www.gromacs.org.
 *
 * To help us fund GROMACS development, we humbly ask that you cite
 * the research papers on the package. Check out http://www.gromacs.org.
 */

/*! \file
 * \brief The gamma distribution
 *
 * Portable version of the gamma distribution that generates the same sequence
 * on all platforms.
 *
 * \note The gamma distribution is broken in some standard library headers
 * (including those shipped with gcc-4.9), and it is not guaranteed to
 * generate the same result on stdlibc++ and libc++. Use this one instead so
 * our unit tests produce the same values on all platforms.
 *
 * \author Erik Lindahl <erik.lindahl@gmail.com>
 * \inpublicapi
 * \ingroup module_random
 */

#ifndef GMX_RANDOM_GAMMADISTRIBUTION_H
#define GMX_RANDOM_GAMMADISTRIBUTION_H

#include <cmath>

#include <limits>

#include "gromacs/random/exponentialdistribution.h"
#include "gromacs/random/uniformrealdistribution.h"
#include "gromacs/utility/classhelpers.h"

/*
 * The workaround implementation for the broken std::gamma_distribution in the
 * gcc-4.6 headers has been modified from the LLVM libcxx headers, distributed
 * under the MIT license:
 *
 * Copyright (c) The LLVM compiler infrastructure
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

namespace gmx
{

/*! \brief Gamma distribution
 *
 *  The C++ standard library does provide a gamma distribution, but when
 *  using libstdc++-4.4.7 with at least gcc-4.6 or icc-14.0 the headers
 *  produce errors. Even for newer compilers, libstdc++ and libc++ appear to
 *  use different algorithms to generate it, which means their values differ
 *  in contrast to the uniform and normal distributions where they are
 *  identical. To avoid both the gcc-4.6 bug and make it easier to use GROMACS
 *   unit tests that depend on random numbers we have our own implementation.
 *
 *  Be warned that the gamma distribution works like the standard
 *  normal distribution and keeps drawing values from the random engine
 *  in a loop, so you want to make sure you use a random stream with a
 *  very large margin to make sure you do not run out of random numbers
 *  in an unlucky case (which will lead to an exception with the GROMACS
 *  default random engine).
 *
 *  The gamma distribution is defined as
 *
 * \f[
 *     p(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}, x\geq 0
 * \f]
 *
 * \tparam RealType Floating-point type, real by default in GROMACS.
 */
template<class RealType = real>
class GammaDistribution
{
    public:
        /*! \brief Type of values returned */
        typedef RealType result_type;

        /*! \brief Gamma distribution parameters */
        class param_type
        {
            /*! \brief First parameter of gamma distribution */
            result_type  alpha_;
            /*! \brief Second parameter of gamma distribution */
            result_type  beta_;

            public:
                /*! \brief Reference back to the distribution class */
                typedef GammaDistribution distribution_type;

                /*! \brief Construct parameter block
                 *
                 * \param alpha  First parameter of gamma distribution
                 * \param beta   Second parameter of gamma distribution
                 */
                explicit param_type(result_type alpha = 1.0, result_type beta = 1.0)
                    : alpha_(alpha), beta_(beta) {}

                /*! \brief Return first parameter */
                result_type alpha() const { return alpha_; }
                /*! \brief Return second parameter */
                result_type beta()  const { return beta_; }

                /*! \brief True if two parameter sets will return the same distribution.
                 *
                 * \param x  Instance to compare with.
                 */
                bool
                operator==(const param_type &x) const
                {
                    return alpha_ == x.alpha_ && beta_ == x.beta_;
                }

                /*! \brief True if two parameter sets will return different distributions
                 *
                 * \param x  Instance to compare with.
                 */
                bool
                operator!=(const param_type &x) const { return !operator==(x); }
        };

    public:

        /*! \brief Construct new distribution with given floating-point parameters.
         *
         * \param alpha  First parameter of gamma distribution
         * \param beta   Second parameter of gamma distribution
         */
        explicit GammaDistribution(result_type alpha = 1.0, result_type beta = 1.0)
            : param_(param_type(alpha, beta)) {}

        /*! \brief Construct new distribution from parameter class
         *
         * \param param  Parameter class as defined inside gmx::GammaDistribution.
         */
        explicit GammaDistribution(const param_type &param) : param_(param) {}

        /*! \brief Flush all internal saved values  */
        void
        reset() {}

        /*! \brief Return values from gamma distribution with internal parameters
         *
         *  \tparam Rng   Random engine class
         *
         *  \param  g     Random engine
         */
        template<class Rng>
        result_type
        operator()(Rng &g) { return (*this)(g, param_); }

        /*! \brief Return value from gamma distribution with given parameters
         *
         *  \tparam Rng   Random engine class
         *
         *  \param  g     Random engine
         *  \param  param Parameters to use
         */
        template<class Rng>
        result_type
        operator()(Rng &g, const param_type &param)
        {
            result_type                            alpha = param.alpha();
            UniformRealDistribution<result_type>   uniformDist(0, 1);
            ExponentialDistribution<result_type>   expDist;

            result_type x;

            if (alpha == 1.0)
            {
                x = expDist(g);
            }
            else if (alpha > 1.0)
            {
                const result_type b = alpha - 1.0;
                const result_type c = 3.0 * alpha - result_type(0.75);

                while (true)
                {
                    const result_type u = uniformDist(g);
                    const result_type v = uniformDist(g);
                    const result_type w = u * (1 - u);

                    if (w != 0)
                    {
                        const result_type y = std::sqrt(c / w) *
                            (u - result_type(0.5));
                        x = b + y;

                        if (x >= 0)
                        {
                            const result_type z = 64 * w * w * w * v * v;

                            if (z <= 1.0 - 2.0 * y * y / x)
                            {
                                break;
                            }
                            if (std::log(z) <= 2.0 * (b * std::log(x / b) - y))
                            {
                                break;
                            }
                        }
                    }
                }
            }
            else  // __a < 1
            {
                while (true)
                {
                    const result_type u  = uniformDist(g);
                    const result_type es = expDist(g);

                    if (u <= 1.0 - alpha)
                    {
                        x = std::pow(u, 1.0 / alpha);

                        if (x <= es)
                        {
                            break;
                        }
                    }
                    else
                    {
                        const result_type e = -std::log((1.0 - u)/alpha);
                        x = std::pow(1.0 - alpha + alpha * e, 1.0 / alpha);

                        if (x <= e + es)
                        {
                            break;
                        }
                    }
                }
            }
            return x * param.beta();
        }

        /*! \brief Return the first parameter of gamma distribution */
        result_type
        alpha() const { return param_.alpha(); }

        /*! \brief Return the second parameter of gamma distribution */
        result_type
        beta() const { return param_.beta(); }

        /*! \brief Return the full parameter class of gamma distribution */
        param_type param() const { return param_; }

        /*! \brief Smallest value that can be returned from gamma distribution */
        result_type
        min() const { return 0; }

        /*! \brief Largest value that can be returned from gamma distribution */
        result_type
        max() const { return std::numeric_limits<result_type>::infinity(); }

        /*! \brief True if two gamma distributions will produce the same values.
         *
         * \param  x     Instance to compare with.
         */
        bool
        operator==(const GammaDistribution &x) const
        { return param_ == x.param_; }

        /*! \brief True if two gamma distributions will produce different values.
         *
         * \param  x     Instance to compare with.
         */
        bool
        operator!=(const GammaDistribution &x) const
        { return !operator==(x); }

    private:
        /*! \brief Internal value for parameters, can be overridden at generation time. */
        param_type param_;

        GMX_DISALLOW_COPY_AND_ASSIGN(GammaDistribution);
};

}      // namespace gmx

#endif // GMX_RANDOM_GAMMADISTRIBUTION_H