/usr/include/healpix_cxx/wigner.h is in libhealpix-cxx-dev 3.30.0-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | /*
* This file is part of libcxxsupport.
*
* libcxxsupport is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libcxxsupport is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libcxxsupport; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*! \file wigner.h
* Several C++ classes for calculating Wigner matrices
*
* Copyright (C) 2009-2011 Max-Planck-Society
* \author Martin Reinecke and others (see individual classes)
*/
#ifndef PLANCK_WIGNER_H
#define PLANCK_WIGNER_H
#include <cmath>
#include "arr.h"
#include "sse_utils_cxx.h"
/*! Class for calculation of the Wigner matrix at pi/2, using Risbo recursion
in a way that cannot easily be parallelised, but is fairly efficient on
scalar machines. */
class wigner_d_halfpi_risbo_scalar
{
private:
double pq;
arr<double> sqt;
arr2<double> d;
int n;
void do_line0 (double *l1, int j);
void do_line (const double *l1, double *l2, int j, int k);
public:
wigner_d_halfpi_risbo_scalar(int lmax);
const arr2<double> &recurse ();
};
/*! Class for calculation of the Wigner matrix at arbitrary angles, using Risbo
recursion in a way that cannot easily be parallelised, but is fairly
efficient on scalar machines. */
class wigner_d_risbo_scalar
{
private:
double p,q;
arr<double> sqt;
arr2<double> d;
int n;
void do_line0 (double *l1, int j);
void do_line (const double *l1, double *l2, int j, int k);
public:
wigner_d_risbo_scalar(int lmax, double ang);
const arr2<double> &recurse ();
};
/*! Class for calculation of the Wigner matrix at pi/2, using Risbo recursion
in a way that can be OpenMP-parallelised. This approach uses more memory
and is slightly slower than wigner_d_halfpi_risbo_scalar. */
class wigner_d_halfpi_risbo_openmp
{
private:
double pq;
arr<double> sqt;
arr2<double> d,dd;
int n;
public:
wigner_d_halfpi_risbo_openmp(int lmax);
const arr2<double> &recurse ();
};
/*! Class for calculation of the Wigner matrix at arbitrary angles, using Risbo
recursion in a way that can be OpenMP-parallelised. This approach uses more
memory and is slightly slower than wigner_d_risbo_scalar. */
class wigner_d_risbo_openmp
{
private:
double p,q;
arr<double> sqt;
arr2<double> d, dd;
int n;
public:
wigner_d_risbo_openmp(int lmax, double ang);
const arr2<double> &recurse ();
};
/*! Class for calculation of the Wigner matrix elements by l-recursion.
For details, see Prezeau & Reinecke 2010, http://arxiv.org/pdf/1002.1050 */
class wignergen_scalar
{
protected:
typedef double dbl3[3];
// members set in the constructor and kept fixed afterwards
double fsmall, fbig, eps;
int lmax;
arr<long double> logsum, lc05, ls05;
arr<double> flm1, flm2, cf, costh, xl;
arr<bool> thetaflip;
// members depending on m and m'
int m1, m2, am1, am2, mlo, mhi, cosPow, sinPow;
long double prefactor;
arr<dbl3> fx;
bool preMinus;
// members depending on theta
arr<double> result;
enum { large_exponent2=90, minscale=-4, maxscale=14 };
public:
/*! Constructs an object that can compute Wigner matrix elements up
to a maximum \a l value of \a lmax_, at the colatitudes provided
in \a thetas. The generator will be allowed to regard values with
absolute magnitudes smaller than \a epsilon as zero; a typical value
is 1e-30. */
wignergen_scalar (int lmax_, const arr<double> &thetas, double epsilon);
/*! Prepares the object to produce Wigner matrix elements with \a m=m1_
and \a m'=m2_ in subsequent calls to calc(). This operation is not cheap
so it is recommended to use calc() for many different colatitudes after
every call to prepare(), if possible. */
void prepare (int m1_, int m2_);
/*! Computes the Wigner matrix elements for the values of \a m and \a m'
set by the preceding call to prepare(), for all \a l up to \a lmax
(set in the constructor), and for the \a nth colatitude passed to the
constructor. On return, \a firstl contains the index of the first
matrix element larger than \a epsilon; all values with smaller indices
in the result array are undefined. */
const arr<double> &calc (int nth, int &firstl);
void calc (int nth, int &firstl, arr<double> &resx) const;
};
class wignergen: public wignergen_scalar
{
#ifdef __SSE2__
private:
arr_align<V2df,16> result2;
public:
wignergen (int lmax_, const arr<double> &thetas, double epsilon)
: wignergen_scalar (lmax_,thetas,epsilon), result2(lmax_+1) {}
using wignergen_scalar::calc;
const arr_align<V2df,16> &calc (int nth1, int nth2, int &firstl);
void calc (int nth1, int nth2, int &firstl, arr_align<V2df,16> &resx) const;
#else
public:
wignergen (int lmax_, const arr<double> &thetas, double epsilon)
: wignergen_scalar (lmax_,thetas,epsilon) {}
#endif
};
class wigner_estimator
{
private:
int lmax, m1, m2, mbig;
double xlmax, epsPow, cosm1m2;
public:
wigner_estimator (int lmax_, double epsPow_);
void prepare_m (int m1_, int m2_);
bool canSkip (double theta) const;
};
#endif
|