/usr/include/libint2/boys.h is in libint2-dev 2.3.0~beta3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 | /*
* This file is a part of Libint.
* Copyright (C) 2004-2014 Edward F. Valeev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License, version 2,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
*/
// prototype for the Boys function engines (Boys function = Fm(T))
// the Chebyshev extrapolation code is based on that by Frank Neese
#ifndef _libint2_src_lib_libint_boys_h_
#define _libint2_src_lib_libint_boys_h_
#if defined(__cplusplus)
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <stdexcept>
#include <libint2/util/vector.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <limits>
#include <type_traits>
// from now on at least C++11 is required by default
#include <libint2/util/cxxstd.h>
#if LIBINT2_CPLUSPLUS_STD < 2011
# error "Libint2 C++ API requires C++11 support"
#endif
#include <libint2/boys_fwd.h>
#include <memory>
#if HAVE_LAPACK // use F77-type interface for now, switch to LAPACKE later
extern "C" void dgesv_(const int* n,
const int* nrhs, double* A, const int* lda,
int* ipiv, double* b, const int* ldb,
int* info);
#endif
namespace libint2 {
/// holds tables of expensive quantities
template<typename Real>
class ExpensiveNumbers {
public:
ExpensiveNumbers(int ifac = -1, int idf = -1, int ibc = -1) {
if (ifac >= 0) {
fac.resize(ifac + 1);
fac[0] = 1.0;
for (int i = 1; i <= ifac; i++) {
fac[i] = i * fac[i - 1];
}
}
if (idf >= 0) {
df.resize(idf + 1);
/* df[i] gives (i-1)!!, so that (-1)!! is defined... */
df[0] = 1.0;
if (idf >= 1)
df[1] = 1.0;
if (idf >= 2)
df[2] = 1.0;
for (int i = 3; i <= idf; i++) {
df[i] = (i - 1) * df[i - 2];
}
}
if (ibc >= 0) {
bc_.resize((ibc+1)*(ibc+1));
std::fill(bc_.begin(), bc_.end(), Real(0));
bc.resize(ibc+1);
bc[0] = &bc_[0];
for(int i=1; i<=ibc; ++i)
bc[i] = bc[i-1] + (ibc+1);
for(int i=0; i<=ibc; i++)
bc[i][0] = 1.0;
for(int i=0; i<=ibc; i++)
for(int j=1; j<=i; ++j)
bc[i][j] = bc[i][j-1] * Real(i-j+1) / Real(j);
}
for (int i = 0; i < 128; i++) {
twoi1[i] = 1.0 / (Real(2.0) * i + Real(1.0));
ihalf[i] = Real(i) - Real(0.5);
}
}
~ExpensiveNumbers() {
}
std::vector<Real> fac;
std::vector<Real> df;
std::vector<Real*> bc;
// these quantitites are needed with indices <= mmax
// 64 is sufficient to handle up to 4 center integrals with up to L=15 basis functions
// but need higher values for Yukawa integrals ...
Real twoi1[128]; /* 1/(2 i + 1); needed for downward recursion */
Real ihalf[128]; /* i - 0.5, needed for upward recursion */
private:
std::vector<Real> bc_;
};
#define _local_min_macro(a,b) ((a) > (b) ? (a) : (b))
/** Computes the Boys function, \f$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \f$,
* using single algorithm (asymptotic expansion). Slow for the sake of precision control.
* Useful in two cases:
* <ul>
* <li> for reference purposes, if \c Real supports high/arbitrary precision, and </li>
* <li> for moderate values of \f$ T \f$, if \c Real is a low-precision floating-point type.
* N.B. FmEval_Reference2 , which can compute for all practical values of \f$ T \f$ and \f$ m \f$, is recommended
* with standard \c Real types (\c double and \c float). </li>
* </ul>
*
* \note Precision is controlled heuristically, i.e. cannot be guaranteed mathematically;
* will stop if absolute precision is reached, or precision of \c Real is exhausted.
* It is important that \c std::numeric_limits<Real> is defined appropriately.
*
* @tparam Real the type to use for all floating-point computations.
* Must be able to compute logarithm and exponential, i.e.
* log(x) and exp(x), where x is Real, must be valid expressions.
*/
template<typename Real>
struct FmEval_Reference {
/// computes a single value of \f$ F_m(T) \f$ using MacLaurin series.
static Real eval(Real T, size_t m, Real absolute_precision) {
assert(m < 100);
static const Real T_crit = std::numeric_limits<Real>::is_bounded == true ? -log( std::numeric_limits<Real>::min() * 100.5 / 2. ) : Real(0) ;
if (std::numeric_limits<Real>::is_bounded && T > T_crit)
throw std::overflow_error("FmEval_Reference<Real>::eval: Real lacks precision for the given value of argument T");
Real denom = (m + 0.5);
Real term = 0.5 * exp(-T) / denom;
Real old_term = 0.0;
Real sum = term;
//Real rel_error;
Real epsilon;
const Real relative_zero = std::numeric_limits<Real>::epsilon();
const Real absolute_precision_o_1000 = absolute_precision * 0.001;
do {
denom += 1.0;
old_term = term;
term = old_term * T / denom;
sum += term;
//rel_error = term / sum;
// stop if adding a term smaller or equal to absolute_precision/1000 and smaller than relative_zero * sum
// When sum is small in absolute value, the second threshold is more important
epsilon = _local_min_macro(absolute_precision_o_1000, sum*relative_zero);
} while (term > epsilon || old_term < term);
return sum;
}
/// fills up an array of Fm(T) for m in [0,mmax]
/// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
/// @param[in] T the Boys function argument
/// @param[in] mmax the maximum value of m for which Boys function will be computed;
/// @param[in] absolute_precision the absolute precision to which to compute the result
static void eval(Real* Fm, Real T, size_t mmax, Real absolute_precision) {
// evaluate for mmax using MacLaurin series
// it converges fastest for the largest m -> use it to compute Fmmax(T)
// see JPC 94, 5564 (1990).
for(size_t m=0; m<=mmax; ++m)
Fm[m] = eval(T, m, absolute_precision);
return;
/** downward recursion does not maintain absolute precision, only relative precision, and cannot be used for T > 10
if (mmax > 0) {
const Real T2 = 2.0 * T;
const Real exp_T = exp(-T);
for (int m = mmax - 1; m >= 0; m--)
Fm[m] = (Fm[m + 1] * T2 + exp_T) / (2 * m + 1);
}
*/
}
};
/** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
* using multi-algorithm approach (upward precision for T>=30, and asymptotic summation for T<30).
* This is slow and should be used for reference purposes, e.g. computing the interpolation tables.
* Precision is not always guaranteed as it is limited by the precision of \c Real type.
* When \c Real is \c double, can maintain 1e-14 precision for up to m=38 and 0<=T<=1e9 .
*
* @tparam Real the type to use for all floating-point computations.
* Must be able to compute logarithm, exponential, square root, and error function, i.e.
* log(x), exp(x), sqrt(x), and erf(x), where x is Real, must be valid expressions.
*/
template<typename Real>
struct FmEval_Reference2 {
/// fills up an array of Fm(T) for m in [0,mmax]
/// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
/// @param[in] t the Boys function argument
/// @param[in] mmax the maximum value of m for which Boys function will be computed;
/// @param[in] absolute_precision the absolute precision to which to compute the result
static void eval(Real* Fm, Real t, size_t mmax, Real absolute_precision) {
if (t < Real(30)) {
FmEval_Reference<Real>::eval(Fm,t,mmax,absolute_precision);
}
else {
const Real two_over_sqrt_pi{1.128379167095512573896158903121545171688101258657997713688171443421284936882986828973487320404214727};
const Real K = 1.0/two_over_sqrt_pi;
auto t2 = 2*t;
auto et = exp(-t);
auto sqrt_t = sqrt(t);
Fm[0] = K*erf(sqrt_t)/sqrt_t;
if (mmax > 0)
for(size_t m=0; m<=mmax-1; m++) {
Fm[m+1] = ((2*m + 1)*Fm[m] - et)/(t2);
}
}
}
};
/** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
* using 7-th order Chebyshev interpolation.
*/
template <typename Real = double>
class FmEval_Chebyshev7 {
static const int ORDER = 7; //!, interpolation order
static const int ORDERp1 = ORDER+1; //!< ORDER + 1
const Real T_crit; //!< critical value of T above which safe to use upward recusion
Real delta; //!< interval size
Real one_over_delta; //! 1/delta
int mmax; //!< the maximum m that is tabulated
ExpensiveNumbers<double> numbers_;
Real *c; /* the Chebyshev coefficients table, N by mmax*interpolation_order */
public:
/// \param m_max maximum value of the Boys function index; set to -1 to skip initialization
/// \param precision the desired precision
FmEval_Chebyshev7(int m_max, double = 0.0) :
T_crit(30.0), // this translates in appr. 1e-15 error in upward recursion, see the note below
mmax(m_max), numbers_(14) {
assert(mmax <= 63);
if (m_max >= 0)
init();
}
~FmEval_Chebyshev7() {
if (mmax >= 0) {
free(c);
}
}
/// Singleton interface allows to manage the lone instance; adjusts max m values as needed in thread-safe fashion
static const std::shared_ptr<FmEval_Chebyshev7>& instance(int m_max, double = 0.0) {
// thread-safe per C++11 standard [6.7.4]
static auto instance_ = std::shared_ptr<FmEval_Chebyshev7>{};
const bool need_new_instance = !instance_ || (instance_ && instance_->max_m() < m_max);
if (need_new_instance) {
auto new_instance = std::make_shared<FmEval_Chebyshev7>(m_max);
instance_ = new_instance; // thread-safe
}
return instance_;
}
/// @return the maximum value of m for which the Boys function can be computed with this object
int max_m() const { return mmax; }
/// fills in Fm with computed Boys function values for m in [0,mmax]
/// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
/// @param[in] x the Boys function argument
/// @param[in] mmax the maximum value of m for which Boys function will be computed; mmax must be <= the value returned by max_m
inline void eval(Real* Fm, Real x, int m_max) const {
// large T => use upward recursion
// cost = 1 div + 1 sqrt + (1 + 2*(m-1)) muls
if (x > T_crit) {
const double one_over_x = 1.0/x;
Fm[0] = 0.88622692545275801365 * sqrt(one_over_x); // see Eq. (9.8.9) in Helgaker-Jorgensen-Olsen
if (m_max == 0)
return;
// this upward recursion formula omits - e^(-x)/(2x), which for x>T_crit is <1e-15
for (int i = 1; i <= m_max; i++)
Fm[i] = Fm[i - 1] * numbers_.ihalf[i] * one_over_x; // see Eq. (9.8.13)
return;
}
// ---------------------------------------------
// small and intermediate arguments => interpolate Fm and (optional) downward recursion
// ---------------------------------------------
// which interval does this x fall into?
const Real x_over_delta = x * one_over_delta;
const int iv = int(x_over_delta); // the interval index
const Real xd = x_over_delta - (Real)iv - 0.5; // this ranges from -0.5 to 0.5
const int m_min = 0;
#if defined(__AVX__)
const auto x2 = xd*xd;
const auto x3 = x2*xd;
const auto x4 = x2*x2;
const auto x5 = x2*x3;
const auto x6 = x3*x3;
const auto x7 = x3*x4;
libint2::simd::VectorAVXDouble x0vec(1., xd, x2, x3);
libint2::simd::VectorAVXDouble x1vec(x4, x5, x6, x7);
#endif // AVX
const Real *d = c + (ORDERp1) * (iv * (mmax+1) + m_min); // ptr to the interpolation data for m=mmin
int m = m_min;
#if defined(__AVX__)
if (m_max-m >=3) {
const int unroll_size = 4;
const int m_fence = (m_max + 2 - unroll_size);
for(; m<m_fence; m+=unroll_size, d+=ORDERp1*unroll_size) {
libint2::simd::VectorAVXDouble d00v, d01v, d10v, d11v,
d20v, d21v, d30v, d31v;
d00v.load_aligned(d); d01v.load_aligned((d+4));
d10v.load_aligned(d+ORDERp1); d11v.load_aligned((d+4)+ORDERp1);
d20v.load_aligned(d+2*ORDERp1); d21v.load_aligned((d+4)+2*ORDERp1);
d30v.load_aligned(d+3*ORDERp1); d31v.load_aligned((d+4)+3*ORDERp1);
libint2::simd::VectorAVXDouble fm0 = d00v * x0vec + d01v * x1vec;
libint2::simd::VectorAVXDouble fm1 = d10v * x0vec + d11v * x1vec;
libint2::simd::VectorAVXDouble fm2 = d20v * x0vec + d21v * x1vec;
libint2::simd::VectorAVXDouble fm3 = d30v * x0vec + d31v * x1vec;
libint2::simd::VectorAVXDouble sum0123 = horizontal_add(fm0, fm1, fm2, fm3);
sum0123.convert(&Fm[m]);
}
} // unroll_size=4
if (m_max-m >=1) {
const int unroll_size = 2;
const int m_fence = (m_max + 2 - unroll_size);
for(; m<m_fence; m+=unroll_size, d+=ORDERp1*unroll_size) {
libint2::simd::VectorAVXDouble d00v, d01v, d10v, d11v;
d00v.load_aligned(d);
d01v.load_aligned((d+4));
d10v.load_aligned(d+ORDERp1);
d11v.load_aligned((d+4)+ORDERp1);
libint2::simd::VectorAVXDouble fm0 = d00v * x0vec + d01v * x1vec;
libint2::simd::VectorAVXDouble fm1 = d10v * x0vec + d11v * x1vec;
libint2::simd::VectorSSEDouble sum01 = horizontal_add(fm0, fm1);
sum01.convert(&Fm[m]);
}
} // unroll_size=2
{ // no unrolling
for(; m<=m_max; ++m, d+=ORDERp1) {
libint2::simd::VectorAVXDouble d0v, d1v;
d0v.load_aligned(d);
d1v.load_aligned(d+4);
Fm[m] = horizontal_add(d0v * x0vec + d1v * x1vec);
}
}
#else // AVX not available
for(m=m_min; m<=m_max; ++m, d+=ORDERp1) {
Fm[m] = d[0]
+ xd * (d[1]
+ xd * (d[2]
+ xd * (d[3]
+ xd * (d[4]
+ xd * (d[5]
+ xd * (d[6]
+ xd * (d[7])))))));
// // check against the reference value
// if (false) {
// double refvalue = FmEval_Reference2<double>::eval(x, m, 1e-15); // compute F(T)
// if (abs(refvalue - Fm[m]) > 1e-10) {
// std::cout << "T = " << x << " m = " << m << " cheb = "
// << Fm[m] << " ref = " << refvalue << std::endl;
// }
// }
}
#endif
} // eval()
private:
void init() {
#include <libint2/boys_cheb7.h>
if (mmax > cheb_table_mmax)
throw std::runtime_error(
"FmEval_Chebyshev7::init() : requested mmax exceeds the "
"hard-coded mmax");
if (T_crit != cheb_table_tmax)
throw std::runtime_error(
"FmEval_Chebyshev7::init() : boys_cheb7.h does not match "
"FmEval_Chebyshev7");
delta = cheb_table_delta;
one_over_delta = 1 / delta;
const int N = cheb_table_nintervals;
// get memory
void* result;
posix_memalign(&result, ORDERp1*sizeof(Real), (mmax + 1) * N * ORDERp1 * sizeof(Real));
c = static_cast<Real*>(result);
// copy contents of static table into c
// need all intervals
for (int iv = 0; iv < N; ++iv) {
// but only values of m up to mmax
std::copy(cheb_table[iv], cheb_table[iv]+(mmax+1)*ORDERp1, c+(iv*(mmax+1))*ORDERp1);
}
}
}; // FmEval_Chebyshev7
#ifndef STATIC_OON
#define STATIC_OON
namespace {
const double oon[] = {0.0, 1.0, 1.0/2.0, 1.0/3.0, 1.0/4.0, 1.0/5.0, 1.0/6.0, 1.0/7.0, 1.0/8.0, 1.0/9.0, 1.0/10.0, 1.0/11.0};
}
#endif
/** Computes the Boys function, \$ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u \$,
* using Taylor interpolation of up to 8-th order.
* @tparam Real the type to use for all floating-point computations. Must support std::exp, std::pow, std::fabs, std::max, and std::floor.
* @tparam INTERPOLATION_ORDER the interpolation order. The higher the order the less memory this object will need, but the computational cost will increase (usually very slightly)
*/
template<typename Real = double, int INTERPOLATION_ORDER = 7>
class FmEval_Taylor {
public:
static const int max_interp_order = 8;
static const bool INTERPOLATION_AND_RECURSION = false; // compute F_lmax(T) and then iterate down to F_0(T)? Else use interpolation only
const double soft_zero_;
/// Constructs the object to be able to compute Boys funcion for m in [0,mmax], with relative \c precision
FmEval_Taylor(unsigned int mmax, Real precision) :
soft_zero_(1e-6), cutoff_(precision), numbers_(
INTERPOLATION_ORDER + 1, 2 * (mmax + INTERPOLATION_ORDER - 1)) {
assert(mmax <= 63);
const double sqrt_pi = std::sqrt(M_PI);
/*---------------------------------------
We are doing Taylor interpolation with
n=TAYLOR_ORDER terms here:
error <= delT^n/(n+1)!
---------------------------------------*/
delT_ = 2.0
* std::pow(cutoff_ * numbers_.fac[INTERPOLATION_ORDER + 1],
1.0 / INTERPOLATION_ORDER);
oodelT_ = 1.0 / delT_;
max_m_ = mmax + INTERPOLATION_ORDER - 1;
T_crit_ = new Real[max_m_ + 1]; /*--- m=0 is included! ---*/
max_T_ = 0;
/*--- Figure out T_crit for each m and put into the T_crit ---*/
for (int m = max_m_; m >= 0; --m) {
/*------------------------------------------
Damped Newton-Raphson method to solve
T^{m-0.5}*exp(-T) = epsilon*Gamma(m+0.5)
The solution is the max T for which to do
the interpolation
------------------------------------------*/
double T = -log(cutoff_);
const double egamma = cutoff_ * sqrt_pi * numbers_.df[2 * m]
/ std::pow(2.0, m);
double T_new = T;
double func;
do {
const double damping_factor = 0.2;
T = T_new;
/* f(T) = the difference between LHS and RHS of the equation above */
func = std::pow(T, m - 0.5) * std::exp(-T) - egamma;
const double dfuncdT = ((m - 0.5) * std::pow(T, m - 1.5)
- std::pow(T, m - 0.5)) * std::exp(-T);
/* f(T) has 2 roots and has a maximum in between. If f'(T) > 0 we are to the left of the hump. Make a big step to the right. */
if (dfuncdT > 0.0) {
T_new *= 2.0;
} else {
/* damp the step */
double deltaT = -func / dfuncdT;
const double sign_deltaT = (deltaT > 0.0) ? 1.0 : -1.0;
const double max_deltaT = damping_factor * T;
if (std::fabs(deltaT) > max_deltaT)
deltaT = sign_deltaT * max_deltaT;
T_new = T + deltaT;
}
if (T_new <= 0.0) {
T_new = T / 2.0;
}
} while (std::fabs(func / egamma) >= soft_zero_);
T_crit_[m] = T_new;
const int T_idx = (int) std::floor(T_new / delT_);
max_T_ = std::max(max_T_, T_idx);
}
// allocate the grid (see the comments below)
{
const int nrow = max_T_ + 1;
const int ncol = max_m_ + 1;
grid_ = new Real*[nrow];
grid_[0] = new Real[nrow * ncol];
//std::cout << "Allocated interpolation table of " << nrow * ncol << " reals" << std::endl;
for (int r = 1; r < nrow; ++r)
grid_[r] = grid_[r - 1] + ncol;
}
/*-------------------------------------------------------
Tabulate the gamma function from t=delT to T_crit[m]:
1) include T=0 though the table is empty for T=0 since
Fm(0) is simple to compute
-------------------------------------------------------*/
/*--- do the mmax first ---*/
for (int T_idx = max_T_; T_idx >= 0; --T_idx) {
const double T = T_idx * delT_;
libint2::FmEval_Reference2<double>::eval(grid_[T_idx], T, max_m_, 1e-100);
}
}
~FmEval_Taylor() {
delete[] T_crit_;
delete[] grid_[0];
delete[] grid_;
}
/// Singleton interface allows to manage the lone instance;
/// adjusts max m and precision values as needed in thread-safe fashion
static const std::shared_ptr<FmEval_Taylor>& instance(unsigned int mmax, Real precision) {
// thread-safe per C++11 standard [6.7.4]
static auto instance_ = std::shared_ptr<FmEval_Taylor>{};
const bool need_new_instance = !instance_ ||
(instance_ && (instance_->max_m() < mmax ||
instance_->precision() > precision));
if (need_new_instance) {
auto new_instance = std::make_shared<FmEval_Taylor>(mmax, precision);
instance_ = new_instance; // thread-safe
}
return instance_;
}
/// @return the maximum value of m for which this object can compute the Boys function
int max_m() const { return max_m_ - INTERPOLATION_ORDER + 1; }
/// @return the precision with which this object can compute the Boys function
Real precision() const { return cutoff_; }
/// computes Boys function values with m index in range [0,mmax]
/// @param[out] Fm array to be filled in with the Boys function values, must be at least mmax+1 elements long
/// @param[in] x the Boys function argument
/// @param[in] mmax the maximum value of m for which Boys function will be computed;
/// it must be <= the value returned by max_m() (this is not checked)
void eval(Real* Fm, Real T, int mmax) const {
const double sqrt_pio2 = 1.2533141373155002512;
const double two_T = 2.0 * T;
// stop recursion at mmin
const int mmin = INTERPOLATION_AND_RECURSION ? mmax : 0;
/*-------------------------------------
Compute Fm(T) from mmax down to mmin
-------------------------------------*/
const bool use_upward_recursion = true;
if (use_upward_recursion) {
// if (T > 30.0) {
if (T > T_crit_[0]) {
const double one_over_x = 1.0/T;
Fm[0] = 0.88622692545275801365 * sqrt(one_over_x); // see Eq. (9.8.9) in Helgaker-Jorgensen-Olsen
if (mmax == 0)
return;
// this upward recursion formula omits - e^(-x)/(2x), which for x>T_crit is <1e-15
for (int i = 1; i <= mmax; i++)
Fm[i] = Fm[i - 1] * numbers_.ihalf[i] * one_over_x; // see Eq. (9.8.13)
return;
}
}
// since Tcrit grows with mmax, this condition only needs to be determined once
if (T > T_crit_[mmax]) {
double pow_two_T_to_minusjp05 = std::pow(two_T, -mmax - 0.5);
for (int m = mmax; m >= mmin; --m) {
/*--- Asymptotic formula ---*/
Fm[m] = numbers_.df[2 * m] * sqrt_pio2 * pow_two_T_to_minusjp05;
pow_two_T_to_minusjp05 *= two_T;
}
}
else
{
const int T_ind = (int) (0.5 + T * oodelT_);
const Real h = T_ind * delT_ - T;
const Real* F_row = grid_[T_ind] + mmin;
#if defined (__AVX__)
libint2::simd::VectorAVXDouble h0123, h4567;
if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
const double h2 = h*h*oon[2];
const double h3 = h2*h*oon[3];
h0123 = libint2::simd::VectorAVXDouble (1.0, h, h2, h3);
if (INTERPOLATION_ORDER == 7) {
const double h4 = h3*h*oon[4];
const double h5 = h4*h*oon[5];
const double h6 = h5*h*oon[6];
const double h7 = h6*h*oon[7];
h4567 = libint2::simd::VectorAVXDouble (h4, h5, h6, h7);
}
}
// libint2::simd::VectorAVXDouble h0123(1.0);
// libint2::simd::VectorAVXDouble h4567(1.0);
#endif
int m = mmin;
if (mmax-m >=1) {
const int unroll_size = 2;
const int m_fence = (mmax + 2 - unroll_size);
for(; m<m_fence; m+=unroll_size, F_row+=unroll_size) {
#if defined(__AVX__)
if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
libint2::simd::VectorAVXDouble fr0_0123; fr0_0123.load(F_row);
libint2::simd::VectorAVXDouble fr1_0123; fr1_0123.load(F_row+1);
libint2::simd::VectorSSEDouble fm01 = horizontal_add(fr0_0123*h0123, fr1_0123*h0123);
if (INTERPOLATION_ORDER == 7) {
libint2::simd::VectorAVXDouble fr0_4567; fr0_4567.load(F_row+4);
libint2::simd::VectorAVXDouble fr1_4567; fr1_4567.load(F_row+5);
fm01 += horizontal_add(fr0_4567*h4567, fr1_4567*h4567);
}
fm01.convert(&Fm[m]);
}
else {
#endif
Real total0 = 0.0, total1 = 0.0;
for(int i=INTERPOLATION_ORDER; i>=1; --i) {
total0 = oon[i]*h*(F_row[i] + total0);
total1 = oon[i]*h*(F_row[i+1] + total1);
}
Fm[m] = F_row[0] + total0;
Fm[m+1] = F_row[1] + total1;
#if defined(__AVX__)
}
#endif
}
} // unroll_size = 2
if (m<=mmax) { // unroll_size = 1
#if defined(__AVX__)
if (INTERPOLATION_ORDER == 3 || INTERPOLATION_ORDER == 7) {
libint2::simd::VectorAVXDouble fr0123; fr0123.load(F_row);
if (INTERPOLATION_ORDER == 7) {
libint2::simd::VectorAVXDouble fr4567; fr4567.load(F_row+4);
// libint2::simd::VectorSSEDouble fm = horizontal_add(fr0123*h0123, fr4567*h4567);
// Fm[m] = horizontal_add(fm);
Fm[m] = horizontal_add(fr0123*h0123 + fr4567*h4567);
}
else { // INTERPOLATION_ORDER == 3
Fm[m] = horizontal_add(fr0123*h0123);
}
}
else {
#endif
Real total = 0.0;
for(int i=INTERPOLATION_ORDER; i>=1; --i) {
total = oon[i]*h*(F_row[i] + total);
}
Fm[m] = F_row[0] + total;
#if defined(__AVX__)
}
#endif
} // unroll_size = 1
// check against the reference value
// if (false) {
// double refvalue = FmEval_Reference2<double>::eval(T, mmax, 1e-15); // compute F(T) with m=mmax
// if (abs(refvalue - Fm[mmax]) > 1e-14) {
// std::cout << "T = " << T << " m = " << mmax << " cheb = "
// << Fm[mmax] << " ref = " << refvalue << std::endl;
// }
// }
} // if T < T_crit
/*------------------------------------
And then do downward recursion in j
------------------------------------*/
if (INTERPOLATION_AND_RECURSION && mmin > 0) {
const Real exp_mT = std::exp(-T);
for (int m = mmin - 1; m >= 0; --m) {
Fm[m] = (exp_mT + two_T * Fm[m+1]) * numbers_.twoi1[m];
}
}
}
private:
Real **grid_; /* Table of "exact" Fm(T) values. Row index corresponds to
values of T (max_T+1 rows), column index to values
of m (max_m+1 columns) */
Real delT_; /* The step size for T, depends on cutoff */
Real oodelT_; /* 1.0 / delT_, see above */
Real cutoff_; /* Tolerance cutoff used in all computations of Fm(T) */
int max_m_; /* Maximum value of m in the table, depends on cutoff
and the number of terms in Taylor interpolation */
int max_T_; /* Maximum index of T in the table, depends on cutoff
and m */
Real *T_crit_; /* Maximum T for each row, depends on cutoff;
for a given m and T_idx <= max_T_idx[m] use Taylor interpolation,
for a given m and T_idx > max_T_idx[m] use the asymptotic formula */
ExpensiveNumbers<double> numbers_;
/**
* Power series estimate of the error introduced by replacing
* \f$ F_m(T) = \int_0^1 \exp(-T t^2) t^{2 m} \, \mathrm{d} t \f$ with analytically
* integrable \f$ \int_0^\infty \exp(-T t^2) t^{2 m} \, \mathrm{d} t = \frac{(2m-1)!!}{2^{m+1}} \sqrt{\frac{\pi}{T^{2m+1}}} \f$
* @param m
* @param T
* @return the error estimate
*/
static double truncation_error(unsigned int m, double T) {
const double m2= m * m;
const double m3= m2 * m;
const double m4= m2 * m2;
const double T2= T * T;
const double T3= T2 * T;
const double T4= T2 * T2;
const double T5= T2 * T3;
const double result = exp(-T) * (105 + 16*m4 + 16*m3*(T - 8) - 30*T + 12*T2
- 8*T3 + 16*T4 + 8*m2*(43 - 9*T + 2*T2) +
4*m*(-88 + 23*T - 8*T2 + 4*T3))/(32*T5);
return result;
}
/**
* Leading-order estimate of the error introduced by replacing
* \f$ F_m(T) = \int_0^1 \exp(-T t^2) t^{2 m} \, \mathrm{d} t \f$ with analytically
* integrable \f$ \int_0^\infty \exp(-T t^2) t^{2 m} \, \mathrm{d} t = \frac{(2m-1)!!}{2^{m+1}} \sqrt{\frac{\pi}{T^{2m+1}}} \f$
* @param m
* @param T
* @return the error estimate
*/
static double truncation_error(double T) {
const double result = exp(-T) /(2*T);
return result;
}
};
//////////////////////////////////////////////////////////
/// core integral for Yukawa and exponential interactions
//////////////////////////////////////////////////////////
#if 0
/**
* Evaluates core integral for the Yukawa potential \f$ \exp(- \zeta r) / r \f$
* @tparam Real real type
*/
template<typename Real>
struct YukawaGmEval {
static const int mmin = -1;
///
YukawaGmEval(unsigned int mmax, Real precision) :
mmax_(mmax), precision_(precision),
numbers_(),
Gm_0_U_(256) // should be enough to hold up to G_{255}(0,U)
{ }
unsigned int max_m() const { return mmax; }
/// @return the precision with which this object can compute the result
Real precision() const { return precision_; }
///
void eval_yukawa(Real* Gm, Real T, Real U, size_t mmax, Real absolute_precision) {
assert(false); // not yet implemented
}
///
void eval_slater(Real* Gm, Real T, Real U, size_t mmax, Real absolute_precision) {
assert(false); // not yet implemented
}
/// Scheme 1 of Ten-no: upward recursion from \f$ G_{-1} (T,U) \f$ and \f$ G_0 (T,U) \f$
/// T must be non-zero!
/// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
static void eval_yukawa_s1(Real* Gm, Real T, Real U, size_t mmax) {
Real G_m1;
const Real sqrt_U = sqrt(U);
const Real sqrt_T = sqrt(T);
const Real oo_sqrt_T = 1 / sqrt_T;
const Real oo_sqrt_U = 1 / sqrt_U;
const Real exp_mT = exp(-T);
const Real kappa = sqrt_U - sqrt_T;
const Real lambda = sqrt_U + sqrt_T;
const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
const Real pfac = sqrtPi_over_4 * exp_mT;
const Real erfc_k = exp(kappa*kappa) * (1 - erf(kappa));
const Real erfc_l = exp(lambda*lambda) * (1 - erf(lambda));
Gm[0] = pfac * (erfc_k + erfc_l) * oo_sqrt_U;
Gm[1] = pfac * (erfc_k - erfc_l) * oo_sqrt_T;
if (mmax > 0) {
// first application of URR
const Real oo_two_T = 0.5 / T;
const Real two_U = 2.0 * U;
for(unsigned int m=1, two_m_minus_1=1; m<=mmax; ++m, two_m_minus_1+=2) {
Gm[m+1] = oo_two_T * ( two_m_minus_1 * Gm[m] + two_U * Gm[m-1] - exp_mT);
}
}
return;
}
/// Scheme 2 of Ten-no:
/// - evaluate G_m(0,U) for m = mmax ... mmax+n, where n is the number of terms in Maclaurin expansion
/// how? see eval_yukawa_Gm0U
/// - then MacLaurin expansion for \f$ G_{m_{\rm max}}(T,U) \f$ and \f$ G_{m_{\rm max}-1}(T,U) \f$
/// - then downward recursion
/// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
void eval_yukawa_s2(Real* Gm, Real T, Real U, size_t mmax) {
// TODO estimate the number of expansion terms for the given precision
const int expansion_order = 60;
eval_yukawa_Gm0U(Gm_0_U_, U, mmax - 1 + expansion_order);
// Maclaurin
// downward recursion
//Gm[m + 1] = 1/(2 U) (E^-T - (2 m + 3) Gm[[m + 2]] + 2 T Gm[[m + 3]])
const Real one_over_twoU = 0.5 / U;
const Real one_over_twoU = 2.0 * T;
const Real exp_mT = exp(-T);
for(int m=mmax-2; m>=-1; --m)
Gm[m] = one_over_twoU (exp_mT - numbers_.twoi1[m+1] * Gm[m+1] + twoT Gm[m+2])
// testing ...
std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm);
return;
}
/// Scheme 3 of Ten-no:
/// - evaluate G_m(0,U) for m = 0 ... mmax+n, where n is the max order of terms in Maclaurin expansion
/// how? see eval_yukawa_Gm0U
/// - then MacLaurin expansion for \f$ G_{m}(T,U) \f$ for m = 0 ... mmax
/// @param[out] Gm \f$ G_m(T,U), m=-1..mmax \f$
void eval_yukawa_s3(Real* Gm, Real T, Real U, size_t mmax) {
// Ten-no's prescription:
//
assert(false);
// testing ...
std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm);
return;
}
/**
* computes prerequisites for MacLaurin expansion of Gm(T,U)
* for m in [-1,mmax); uses Ten-no's prescription, i.e.
*
*
* @param[out] Gm0U
* @param[in] U
* @param[in] mmax
*/
void eval_yukawa_Gm0U(Real* Gm0U, Real U, int mmax, int mmin = -1) {
// Ten-no's prescription:
// start with Gm*(0,T)
// 1) for U < 5, m* = -1
// 2) for U > 5, m* = min(U,mmax)
int mstar;
// G_{-1} (0,U) is easy
if (U < 5.0) {
mstar = -1;
const Real sqrt_U = sqrt(U);
const Real exp_U = exp(U);
const Real oo_sqrt_U = 1 / sqrt_U;
const Real sqrtPi_over_2(
0.88622692545275801364908374167057259139877472806119);
const Real pfac = sqrtPi_over_2 * exp_U;
const Real erfc_sqrt_U = 1.0 - erf(sqrt_U);
Gm_0_U_[0] = pfac * exp_U * oo_sqrt_U * erfc_sqrt_U;
// can get G0 for "free"
// this is the l'Hopital-transformed expression for G_0 (0,T)
// const Real sqrtPi(
// 1.7724538509055160272981674833411451827975494561224);
// Gm_0_U_[1] = 1.0 - exp_U * sqrtPi * sqrt_U * erfc_sqrt_U;
}
else { // use continued fraction for m*
mstar = std::min((size_t)U,(size_t)mmax);
const bool implemented = false;
assert(implemented == true);
}
{ // use recursion if needed
const Real two_U = 2.0 * U;
// simplified URR
if (mmax > mstar) {
for(int m=mstar+1; m<=mmax; ++m) {
Gm_0_U_[m+1] = numbers_.twoi1[m] * (1.0 - two_U * Gm_0_U_[m]);
}
}
// simplified DRR
if (mstar > mmin) { // instead of -1 because we trigger this only for U > 5
const Real one_over_U = 2.0 / two_U;
for(int m=mstar-1; m>=mmin; --m) {
Gm_0_U_[m+1] = one_over_U * ( 0.5 - numbers_.ihalf[m+2] * Gm_0_U_[m+2]);
}
}
}
// testing ...
std::copy(Gm_0_U_.begin()+1, Gm_0_U_.begin()+mmax+2, Gm0U);
return;
}
/// computes a single value of G_{-1}(T,U)
static Real eval_Gm1(Real T, Real U) {
const Real sqrt_U = sqrt(U);
const Real sqrt_T = sqrt(T);
const Real exp_mT = exp(-T);
const Real kappa = sqrt_U - sqrt_T;
const Real lambda = sqrt_U + sqrt_T;
const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
const Real result = sqrtPi_over_4 * exp_mT *
(exp(kappa*kappa) * (1 - erf(kappa)) + exp(lambda*lambda) * (1 - erf(lambda))) / sqrt_U;
return result;
}
/// computes a single value of G_0(T,U)
static Real eval_G0(Real T, Real U) {
const Real sqrt_U = sqrt(U);
const Real sqrt_T = sqrt(T);
const Real exp_mT = exp(-T);
const Real kappa = sqrt_U - sqrt_T;
const Real lambda = sqrt_U + sqrt_T;
const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
const Real result = sqrtPi_over_4 * exp_mT *
(exp(kappa*kappa) * (1 - erf(kappa)) - exp(lambda*lambda) * (1 - erf(lambda))) / sqrt_T;
return result;
}
/// computes \f$ G_{-1}(T,U) \f$ and \f$ G_{0}(T,U) \f$ , both are needed for Yukawa and Slater integrals
/// @param[out] result result[0] contains \f$ G_{-1}(T,U) \f$, result[1] contains \f$ G_{0}(T,U) \f$
static void eval_G_m1_0(Real* result, Real T, Real U) {
const Real sqrt_U = sqrt(U);
const Real sqrt_T = sqrt(T);
const Real oo_sqrt_U = 1 / sqrt_U;
const Real oo_sqrt_T = 1 / sqrt_T;
const Real exp_mT = exp(-T);
const Real kappa = sqrt_U - sqrt_T;
const Real lambda = sqrt_U + sqrt_T;
const Real sqrtPi_over_4(0.44311346272637900682454187083528629569938736403060);
const Real pfac = sqrtPi_over_4 * exp_mT;
const Real erfc_k = exp(kappa*kappa) * (1 - erf(kappa));
const Real erfc_l = exp(lambda*lambda) * (1 - erf(lambda));
result[0] = pfac * (erfc_k + erfc_l) * oo_sqrt_U;
result[1] = pfac * (erfc_k - erfc_l) * oo_sqrt_T;
}
/// computes a single value of G(T,U) using MacLaurin series.
static Real eval_MacLaurinT(Real T, Real U, size_t m, Real absolute_precision) {
assert(false); // not yet implemented
return 0.0;
}
private:
std::vector<Real> Gm_0_U_; // used for MacLaurin expansion
unsigned int mmax_;
Real precision_;
ExpensiveNumbers<Real> numbers_;
// since evaluation may involve several functions, will store some intermediate constants here
// to avoid the cost of extra parameters
//Real exp_U_;
//Real exp_mT_;
size_t count_tenno_algorithm_branches[3]; // counts the number of times each branch Ten-no algorithm
// was picked
};
#endif
template<typename Real, int k>
struct GaussianGmEval;
namespace detail {
/// some evaluators need thread-local scratch, but most don't
template <typename CoreEval> struct CoreEvalScratch {
CoreEvalScratch() = default;
CoreEvalScratch(int) { }
};
/// GaussianGmEval<Real,-1> needs extra scratch data
template <typename Real>
struct CoreEvalScratch<GaussianGmEval<Real, -1>> {
std::vector<Real> Fm_;
std::vector<Real> g_i;
std::vector<Real> r_i;
std::vector<Real> oorhog_i;
CoreEvalScratch() = default;
CoreEvalScratch(int mmax) {
init(mmax);
}
private:
void init(int mmax) {
Fm_.resize(mmax+1);
g_i.resize(mmax+1);
r_i.resize(mmax+1);
oorhog_i.resize(mmax+1);
g_i[0] = 1.0;
r_i[0] = 1.0;
}
};
} // namespace libint2::detail
//////////////////////////////////////////////////////////
/// core integrals r12^k \sum_i \exp(- a_i r_12^2)
//////////////////////////////////////////////////////////
/**
* Evaluates core integral \$ G_m(\rho, T) = \left( - \frac{\partial}{\partial T} \right)^n G_0(\rho,T) \f$,
* \f$ G_0(\rho,T) = \int \exp(-\rho |\vec{r} - \vec{P} + \vec{Q}|^2) g(r) \, {\rm d}\vec{r} \f$
* over a general contracted
* Gaussian geminal \f$ g(r_{12}) = r_{12}^k \sum_i c_i \exp(- a_i r_{12}^2), \quad k = -1, 0, 2 \f$ .
* The integrals are needed in R12/F12 methods with STG-nG correlation factors.
* Specifically, for a correlation factor \f$ f(r_{12}) = \sum_i c_i \exp(- a_i r_{12}^2) \f$
* integrals with the following kernels are needed:
* <ul>
* <li> \f$ f(r_{12}) \f$ (k=0) </li>
* <li> \f$ f(r_{12}) / r_{12} \f$ (k=-1) </li>
* <li> \f$ f(r_{12})^2 \f$ (k=0, @sa GaussianGmEval::eval ) </li>
* <li> \f$ [f(r_{12}), [\hat{T}_1, f(r_{12})]] \f$ (k=2, @sa GaussianGmEval::eval ) </li>
* </ul>
*
* N.B. ``Asymmetric'' kernels, \f$ f(r_{12}) g(r_{12}) \f$ and
* \f$ [f(r_{12}), [\hat{T}_1, g(r_{12})]] \f$, where f and g are two different geminals,
* can also be handled straightforwardly.
*
* \note for more details see DOI: 10.1039/b605188j
*/
template<typename Real, int k>
struct GaussianGmEval : private detail::CoreEvalScratch<GaussianGmEval<Real,k>> // N.B. empty-base optimization
{
/**
* @param[in] mmax the evaluator will be used to compute Gm(T) for 0 <= m <= mmax
*/
GaussianGmEval(int mmax, Real precision) :
detail::CoreEvalScratch<GaussianGmEval<Real, k>>(mmax), mmax_(mmax),
precision_(precision), fm_eval_(),
numbers_(-1,-1,mmax) {
assert(k == -1 || k == 0 || k == 2);
// for k=-1 need to evaluate the Boys function
if (k == -1) {
fm_eval_ = FmEval_Taylor<Real>::instance(mmax_, precision_);
}
}
~GaussianGmEval() {
}
/// Singleton interface allows to manage the lone instance;
/// adjusts max m and precision values as needed in thread-safe fashion
static const std::shared_ptr<GaussianGmEval>& instance(unsigned int mmax, Real precision) {
// thread-safe per C++11 standard [6.7.4]
static auto instance_ = std::shared_ptr<GaussianGmEval>{};
const bool need_new_instance = !instance_ ||
(instance_ && (instance_->max_m() < mmax ||
instance_->precision() > precision));
if (need_new_instance) {
auto new_instance = std::make_shared<GaussianGmEval>(mmax, precision);
instance_ = new_instance; // thread-safe
}
return instance_;
}
/// @return the maximum value of m for which the \f$ G_m(\rho, T) \f$ can be computed with this object
int max_m() const { return mmax_; }
/// @return the precision with which this object can compute the Boys function
Real precision() const { return precision_; }
/** computes \f$ G_m(\rho, T) \f$ using downward recursion.
*
* @warning NOT reentrant if \c k == -1 and C++11 is not available
*
* @param[out] Gm array to be filled in with the \f$ Gm(\rho, T) \f$ values, must be at least mmax+1 elements long
* @param[in] rho
* @param[in] T
* @param[in] mmax mmax the maximum value of m for which Boys function will be computed;
* it must be <= the value returned by max_m() (this is not checked)
* @param[in] geminal the Gaussian geminal for which the core integral \f$ Gm(\rho, T) \f$ is computed
* @param[in] scr if \c k ==-1 and need this to be reentrant, must provide ptr to
* the per-thread \c libint2::detail::CoreEvalScratch<GaussianGmEval<Real,-1>> object;
* no need to specify \c scr otherwise
*/
template <typename AnyReal>
void eval(Real* Gm, Real rho, Real T, size_t mmax,
const std::vector<std::pair<AnyReal, AnyReal> >& geminal,
void* scr = 0) {
std::fill(Gm, Gm+mmax+1, Real(0));
const auto sqrt_rho = sqrt(rho);
const auto oo_sqrt_rho = 1/sqrt_rho;
if (k == -1) {
void* _scr = (scr == 0) ? this : scr;
auto& scratch = *(reinterpret_cast<detail::CoreEvalScratch<GaussianGmEval<Real, -1>>*>(_scr));
for(int i=1; i<=mmax; i++) {
scratch.r_i[i] = scratch.r_i[i-1] * rho;
}
}
typedef typename std::vector<std::pair<AnyReal, AnyReal> >::const_iterator citer;
const citer gend = geminal.end();
for(citer i=geminal.begin(); i!= gend; ++i) {
const auto gamma = i->first;
const auto gcoef = i->second;
const auto rhog = rho + gamma;
const auto oorhog = 1/rhog;
const auto gorg = gamma * oorhog;
const auto rorg = rho * oorhog;
const auto sqrt_rho_org = sqrt_rho * oorhog;
const auto sqrt_rhog = sqrt(rhog);
const auto sqrt_rorg = sqrt_rho_org * sqrt_rhog;
/// (ss|g12|ss)
constexpr Real const_SQRTPI_2(0.88622692545275801364908374167057259139877472806119); /* sqrt(pi)/2 */
const auto SS_K0G12_SS = gcoef * oo_sqrt_rho * const_SQRTPI_2 * rorg * sqrt_rorg * exp(-gorg*T);
if (k == -1) {
void* _scr = (scr == 0) ? this : scr;
auto& scratch = *(reinterpret_cast<detail::CoreEvalScratch<GaussianGmEval<Real, -1>>*>(_scr));
const auto rorgT = rorg * T;
fm_eval_->eval(&scratch.Fm_[0], rorgT, mmax);
#if 1
constexpr Real const_2_SQRTPI(1.12837916709551257389615890312154517); /* 2/sqrt(pi) */
const auto pfac = const_2_SQRTPI * sqrt_rhog * SS_K0G12_SS;
scratch.oorhog_i[0] = pfac;
for(int i=1; i<=mmax; i++) {
scratch.g_i[i] = scratch.g_i[i-1] * gamma;
scratch.oorhog_i[i] = scratch.oorhog_i[i-1] * oorhog;
}
for(int m=0; m<=mmax; m++) {
Real ssss = 0.0;
Real* bcm = numbers_.bc[m];
for(int n=0; n<=m; n++) {
ssss += bcm[n] * scratch.r_i[n] * scratch.g_i[m-n] * scratch.Fm_[n];
}
Gm[m] += ssss * scratch.oorhog_i[m];
}
#endif
}
if (k == 0) {
auto ss_oper_ss_m = SS_K0G12_SS;
Gm[0] += ss_oper_ss_m;
for(int m=1; m<=mmax; ++m) {
ss_oper_ss_m *= gorg;
Gm[m] += ss_oper_ss_m;
}
}
if (k == 2) {
/// (ss|g12*r12^2|ss)
const auto rorgT = rorg * T;
const auto SS_K2G12_SS_0 = (1.5 + rorgT) * (SS_K0G12_SS * oorhog);
const auto SS_K2G12_SS_m1 = rorg * (SS_K0G12_SS * oorhog);
auto SS_K2G12_SS_gorg_m = SS_K2G12_SS_0 ;
auto SS_K2G12_SS_gorg_m1 = SS_K2G12_SS_m1;
Gm[0] += SS_K2G12_SS_gorg_m;
for(int m=1; m<=mmax; ++m) {
SS_K2G12_SS_gorg_m *= gorg;
Gm[m] += SS_K2G12_SS_gorg_m - m * SS_K2G12_SS_gorg_m1;
SS_K2G12_SS_gorg_m1 *= gorg;
}
}
}
}
private:
int mmax_;
Real precision_; //< absolute precision
std::shared_ptr<FmEval_Taylor<Real>> fm_eval_;
ExpensiveNumbers<Real> numbers_;
};
template <typename GmEvalFunction>
struct GenericGmEval : private GmEvalFunction {
typedef typename GmEvalFunction::value_type Real;
GenericGmEval(int mmax, Real precision) : GmEvalFunction(mmax, precision),
mmax_(mmax), precision_(precision) {}
static std::shared_ptr<GenericGmEval> instance(int mmax, Real precision = 0.0) {
return std::make_shared<GenericGmEval>(mmax, precision);
}
template <typename Real, typename... ExtraArgs>
void eval(Real* Gm, Real rho, Real T, int mmax, ExtraArgs... args) {
assert(mmax <= mmax_);
(GmEvalFunction(*this))(Gm, rho, T, mmax, std::forward<ExtraArgs>(args)...);
}
/// @return the maximum value of m for which the \f$ G_m(\rho, T) \f$ can be computed with this object
int max_m() const { return mmax_; }
/// @return the precision with which this object can compute the Boys function
Real precision() const { return precision_; }
private:
int mmax_;
Real precision_;
};
// these Gm engines need extra scratch data
namespace os_core_ints {
template <typename Real, int K> struct r12_xx_K_gm_eval;
template <typename Real> struct erfc_coulomb_gm_eval;
}
namespace detail {
/// r12_xx_K_gm_eval<1> needs extra scratch data
template <typename Real>
struct CoreEvalScratch<os_core_ints::r12_xx_K_gm_eval<Real, 1>> {
std::vector<Real> Fm_;
CoreEvalScratch() = default;
// need to store Fm(T) for m = 0 .. mmax+1
explicit CoreEvalScratch(int mmax) { Fm_.resize(mmax+2); }
};
/// erfc_coulomb_gm_eval needs extra scratch data
template <typename Real>
struct CoreEvalScratch<os_core_ints::erfc_coulomb_gm_eval<Real>> {
std::vector<Real> Fm_;
CoreEvalScratch() = default;
// need to store Fm(T) for m = 0 .. mmax
explicit CoreEvalScratch(int mmax) { Fm_.resize(mmax+1); }
};
}
/// Obara-Saika core ints code
namespace os_core_ints {
/// core integral evaluator delta function kernels
template <typename Real>
struct delta_gm_eval {
typedef Real value_type;
delta_gm_eval(unsigned int, Real) {}
void operator()(Real* Gm, Real rho, Real T, int mmax) {
constexpr static auto one_over_two_pi = 1.0 / (2.0 * M_PI);
const auto G0 = exp(-T) * rho * one_over_two_pi;
std::fill(Gm, Gm + mmax + 1, G0);
}
};
/// core integral evaluator for \f$ r_{12}^K \f$ kernel
/// @tparam K currently supported \c K=1 (use Boys engine directly for \c K=-1)
/// @note need extra scratch for Boys function values when \c K==1,
/// the Gm vector is not long enough for scratch
template <typename Real, int K>
struct r12_xx_K_gm_eval;
template <typename Real>
struct r12_xx_K_gm_eval<Real, 1>
: private detail::CoreEvalScratch<r12_xx_K_gm_eval<Real, 1>> {
typedef detail::CoreEvalScratch<r12_xx_K_gm_eval<Real, 1>> base_type;
typedef Real value_type;
r12_xx_K_gm_eval(unsigned int mmax, Real precision)
: base_type(mmax) {
fm_eval_ = FmEval_Taylor<Real>::instance(mmax + 1, precision);
}
void operator()(Real* Gm, Real rho, Real T, int mmax) {
fm_eval_->eval(&base_type::Fm_[0], T, mmax + 1);
auto T_plus_m_plus_one = T + 1.0;
Gm[0] = T_plus_m_plus_one * base_type::Fm_[0] - T * base_type::Fm_[1];
auto minus_m = -1.0;
T_plus_m_plus_one += 1.0;
for (auto m = 1; m <= mmax;
++m, minus_m -= 1.0, T_plus_m_plus_one += 1.0) {
Gm[m] =
minus_m * base_type::Fm_[m - 1] + T_plus_m_plus_one * base_type::Fm_[m] - T * base_type::Fm_[m + 1];
}
}
private:
std::shared_ptr<FmEval_Taylor<Real>> fm_eval_; // need for odd K
};
/// core integral evaluator for \f$ \mathrm{erf}(\omega r) / r \f$ kernel
template <typename Real>
struct erf_coulomb_gm_eval {
typedef Real value_type;
erf_coulomb_gm_eval(unsigned int mmax, Real precision) {
fm_eval_ = FmEval_Taylor<Real>::instance(mmax, precision);
}
void operator()(Real* Gm, Real rho, Real T, int mmax, Real omega) {
if (omega > 0) {
auto omega2 = omega * omega;
auto omega2_over_omega2_plus_rho = omega2 / (omega2 + rho);
fm_eval_->eval(Gm, T * omega2_over_omega2_plus_rho,
mmax);
auto ooversqrto2prho_exp_2mplus1 =
std::sqrt(omega2_over_omega2_plus_rho);
for (auto m = 0; m <= mmax;
++m, ooversqrto2prho_exp_2mplus1 *= omega2_over_omega2_plus_rho) {
Gm[m] *= ooversqrto2prho_exp_2mplus1;
}
}
else {
std::fill(Gm, Gm+mmax+1, Real{0});
}
}
private:
std::shared_ptr<FmEval_Taylor<Real>> fm_eval_; // need for odd K
};
/// core integral evaluator for \f$ \mathrm{erfc}(\omega r) / r \f$ kernel
/// @note need extra scratch for Boys function values,
/// since need to call Boys engine twice
template <typename Real>
struct erfc_coulomb_gm_eval : private
detail::CoreEvalScratch<erfc_coulomb_gm_eval<Real>> {
typedef detail::CoreEvalScratch<erfc_coulomb_gm_eval<Real>> base_type;
typedef Real value_type;
erfc_coulomb_gm_eval(unsigned int mmax, Real precision)
: base_type(mmax) {
fm_eval_ = FmEval_Taylor<Real>::instance(mmax, precision);
}
void operator()(Real* Gm, Real rho, Real T, int mmax, Real omega) {
fm_eval_->eval(&base_type::Fm_[0], T, mmax);
std::copy(base_type::Fm_.cbegin(), base_type::Fm_.cbegin() + mmax + 1, Gm);
if (omega > 0) {
auto omega2 = omega * omega;
auto omega2_over_omega2_plus_rho = omega2 / (omega2 + rho);
fm_eval_->eval(&base_type::Fm_[0], T * omega2_over_omega2_plus_rho,
mmax);
auto ooversqrto2prho_exp_2mplus1 =
std::sqrt(omega2_over_omega2_plus_rho);
for (auto m = 0; m <= mmax;
++m, ooversqrto2prho_exp_2mplus1 *= omega2_over_omega2_plus_rho) {
Gm[m] -= ooversqrto2prho_exp_2mplus1 * base_type::Fm_[m];
}
}
}
private:
std::shared_ptr<FmEval_Taylor<Real>> fm_eval_; // need for odd K
};
} // namespace os_core_ints
/*
* Slater geminal fitting is available only if have LAPACK
*/
#if HAVE_LAPACK
/*
f[x_] := - Exp[-\[Zeta] x] / \[Zeta];
ff[cc_, aa_, x_] := Sum[cc[[i]]*Exp[-aa[[i]] x^2], {i, 1, n}];
*/
template <typename Real>
Real
fstg(Real zeta,
Real x) {
return -std::exp(-zeta*x)/zeta;
}
template <typename Real>
Real
fngtg(const std::vector<Real>& cc,
const std::vector<Real>& aa,
Real x) {
Real value = 0.0;
const Real x2 = x * x;
const unsigned int n = cc.size();
for(unsigned int i=0; i<n; ++i)
value += cc[i] * std::exp(- aa[i] * x2);
return value;
}
// --- weighting functions ---
// L2 error is weighted by ww(x)
// hence error is weighted by sqrt(ww(x))
template <typename Real>
Real
wwtewklopper(Real x) {
const Real x2 = x * x;
return x2 * std::exp(-2 * x2);
}
template <typename Real>
Real
wwcusp(Real x) {
const Real x2 = x * x;
const Real x6 = x2 * x2 * x2;
return std::exp(-0.005 * x6);
}
// default is Tew-Klopper
template <typename Real>
Real
ww(Real x) {
//return wwtewklopper(x);
return wwcusp(x);
}
template <typename Real>
Real
norm(const std::vector<Real>& vec) {
Real value = 0.0;
const unsigned int n = vec.size();
for(unsigned int i=0; i<n; ++i)
value += vec[i] * vec[i];
return value;
}
template <typename Real>
void LinearSolveDamped(const std::vector<Real>& A,
const std::vector<Real>& b,
Real lambda,
std::vector<Real>& x) {
const size_t n = b.size();
std::vector<Real> Acopy(A);
for(size_t m=0; m<n; ++m) Acopy[m*n + m] *= (1 + lambda);
std::vector<Real> e(b);
//int info = LAPACKE_dgesv( LAPACK_ROW_MAJOR, n, 1, &Acopy[0], n, &ipiv[0], &e[0], n );
{
std::vector<int> ipiv(n);
int n = b.size();
int one = 1;
int info;
dgesv_(&n, &one, &Acopy[0], &n, &ipiv[0], &e[0], &n, &info);
assert (info == 0);
}
x = e;
}
/**
* computes a least-squares fit of \f$ -exp(-\zeta r_{12})/\zeta = \sum_{i=1}^n c_i exp(-a_i r_{12}^2) \f$
* on \f$ r_{12} \in [0, x_{\rm max}] \f$ discretized to npts.
* @param[in] n
* @param[in] zeta
* @param[out] geminal
* @param[in] xmin
* @param[in] xmax
* @param[in] npts
*/
template <typename Real>
void stg_ng_fit(unsigned int n,
Real zeta,
std::vector< std::pair<Real, Real> >& geminal,
Real xmin = 0.0,
Real xmax = 10.0,
unsigned int npts = 1001) {
// initial guess
std::vector<Real> cc(n, 1.0); // coefficients
std::vector<Real> aa(n); // exponents
for(unsigned int i=0; i<n; ++i)
aa[i] = std::pow(3.0, (i + 2 - (n + 1)/2.0));
// first rescale cc for ff[x] to match the norm of f[x]
Real ffnormfac = 0.0;
for(unsigned int i=0; i<n; ++i)
for(unsigned int j=0; j<n; ++j)
ffnormfac += cc[i] * cc[j]/std::sqrt(aa[i] + aa[j]);
const Real Nf = std::sqrt(2.0 * zeta) * zeta;
const Real Nff = std::sqrt(2.0) / (std::sqrt(ffnormfac) *
std::sqrt(std::sqrt(M_PI)));
for(unsigned int i=0; i<n; ++i) cc[i] *= -Nff/Nf;
Real lambda0 = 1000; // damping factor is initially set to 1000, eventually should end up at 0
const Real nu = 3.0; // increase/decrease the damping factor scale it by this
const Real epsilon = 1e-15; // convergence
const unsigned int maxniter = 200;
// grid points on which we will fit
std::vector<Real> xi(npts);
for(unsigned int i=0; i<npts; ++i) xi[i] = xmin + (xmax - xmin)*i/(npts - 1);
std::vector<Real> err(npts);
const size_t nparams = 2*n; // params = expansion coefficients + gaussian exponents
std::vector<Real> J( npts * nparams );
std::vector<Real> delta(nparams);
// std::cout << "iteration 0" << std::endl;
// for(unsigned int i=0; i<n; ++i)
// std::cout << cc[i] << " " << aa[i] << std::endl;
Real errnormI;
Real errnormIm1 = 1e3;
bool converged = false;
unsigned int iter = 0;
while (!converged && iter < maxniter) {
// std::cout << "Iteration " << ++iter << ": lambda = " << lambda0/nu << std::endl;
for(unsigned int i=0; i<npts; ++i) {
const Real x = xi[i];
err[i] = (fstg(zeta, x) - fngtg(cc, aa, x)) * std::sqrt(ww(x));
}
errnormI = norm(err)/std::sqrt((Real)npts);
// std::cout << "|err|=" << errnormI << std::endl;
converged = std::abs((errnormI - errnormIm1)/errnormIm1) <= epsilon;
if (converged) break;
errnormIm1 = errnormI;
for(unsigned int i=0; i<npts; ++i) {
const Real x2 = xi[i] * xi[i];
const Real sqrt_ww_x = std::sqrt(ww(xi[i]));
const unsigned int ioffset = i * nparams;
for(unsigned int j=0; j<n; ++j)
J[ioffset+j] = (std::exp(-aa[j] * x2)) * sqrt_ww_x;
const unsigned int ioffsetn = ioffset+n;
for(unsigned int j=0; j<n; ++j)
J[ioffsetn+j] = - sqrt_ww_x * x2 * cc[j] * std::exp(-aa[j] * x2);
}
std::vector<Real> A( nparams * nparams);
for(size_t r=0, rc=0; r<nparams; ++r) {
for(size_t c=0; c<nparams; ++c, ++rc) {
double Arc = 0.0;
for(size_t i=0, ir=r, ic=c; i<npts; ++i, ir+=nparams, ic+=nparams)
Arc += J[ir] * J[ic];
A[rc] = Arc;
}
}
std::vector<Real> b( nparams );
for(size_t r=0; r<nparams; ++r) {
Real br = 0.0;
for(size_t i=0, ir=r; i<npts; ++i, ir+=nparams)
br += J[ir] * err[i];
b[r] = br;
}
// try decreasing damping first
// if not successful try increasing damping until it results in a decrease in the error
lambda0 /= nu;
for(int l=-1; l<1000; ++l) {
LinearSolveDamped(A, b, lambda0, delta );
std::vector<double> cc_0(cc); for(unsigned int i=0; i<n; ++i) cc_0[i] += delta[i];
std::vector<double> aa_0(aa); for(unsigned int i=0; i<n; ++i) aa_0[i] += delta[i+n];
// if any of the exponents are negative the step is too large and need to increase damping
bool step_too_large = false;
for(unsigned int i=0; i<n; ++i)
if (aa_0[i] < 0.0) {
step_too_large = true;
break;
}
if (!step_too_large) {
std::vector<double> err_0(npts);
for(unsigned int i=0; i<npts; ++i) {
const double x = xi[i];
err_0[i] = (fstg(zeta, x) - fngtg(cc_0, aa_0, x)) * std::sqrt(ww(x));
}
const double errnorm_0 = norm(err_0)/std::sqrt((double)npts);
if (errnorm_0 < errnormI) {
cc = cc_0;
aa = aa_0;
break;
}
else // step lead to increase of the error -- try dampening a bit more
lambda0 *= nu;
}
else // too large of a step
lambda0 *= nu;
} // done adjusting the damping factor
} // end of iterative minimization
// if reached max # of iterations throw if the error is too terrible
assert(not (iter == maxniter && errnormI > 1e-10));
for(unsigned int i=0; i<n; ++i)
geminal[i] = std::make_pair(aa[i], cc[i]);
}
#endif
} // end of namespace libint2
#endif // C++ only
#endif // header guard
|