/usr/include/libint2/engine.h is in libint2-dev 2.3.0~beta3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | /*
* This file is a part of Libint.
* Copyright (C) 2004-2014 Edward F. Valeev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License, version 2,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
*/
#ifndef _libint2_src_lib_libint_engine_h_
#define _libint2_src_lib_libint_engine_h_
#ifndef LIBINT2_DOES_NOT_INLINE_ENGINE
# define __libint2_engine_inline inline
#else
# define __libint2_engine_inline
#endif
#include <libint2/util/cxxstd.h>
#if LIBINT2_CPLUSPLUS_STD < 2011
# error "libint2/engine.h requires C++11 support"
#endif
#include <algorithm>
#include <array>
#include <cstring>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include <libint2/cxxapi.h>
#include <libint2/boys_fwd.h>
#include <libint2/shell.h>
#include <libint2/solidharmonics.h>
#include <libint2/util/any.h>
#include <libint2/util/array_adaptor.h>
#include <libint2/util/intpart_iter.h>
#include <libint2/util/compressed_pair.h>
#include <libint2/util/timer.h>
// the engine will be profiled by default if library was configured with
// --enable-profile
#ifdef LIBINT2_PROFILE
#define LIBINT2_ENGINE_TIMERS
// uncomment if want to profile each integral class
#define LIBINT2_ENGINE_PROFILE_CLASS
#endif
// uncomment if want to profile the engine even if library was configured
// without --enable-profile
//# define LIBINT2_ENGINE_TIMERS
namespace libint2 {
/// contracted Gaussian geminal = \f$ \sum_i c_i \exp(- \alpha r_{12}^2) \f$,
/// represented as a vector of
/// {\f$ \alpha_i \f$, \f$ c_i \f$ } pairs
typedef std::vector<std::pair<double, double>> ContractedGaussianGeminal;
constexpr size_t num_geometrical_derivatives(size_t ncenter,
size_t deriv_order) {
return (deriv_order > 0)
? (num_geometrical_derivatives(ncenter, deriv_order - 1) *
(3 * ncenter + deriv_order - 1)) /
deriv_order
: 1;
}
template <typename T, unsigned N>
__libint2_engine_inline typename std::remove_all_extents<T>::type* to_ptr1(T (&a)[N]);
/// types of operators (operator sets) supported by Engine.
/// \warning These must start with 0 and appear in same order as elements of
/// BOOST_PP_NBODY_OPERATOR_LIST preprocessor macro (aliases do not need to be included).
/// \warning for the sake of nbody() order operators by # of particles
enum class Operator {
/// overlap
overlap = 0,
/// electronic kinetic energy, i.e. \f$ -\frac{1}{2} \nabla^2 \f$
kinetic,
/// Coulomb potential due to point charges
nuclear,
/// overlap + (Cartesian) electric dipole moment,
//! \f$ x_O, y_O, z_O \f$, where
//! \f$ x_O \equiv x - O_x \f$ is relative to
//! origin \f$ \vec{O} \f$
emultipole1,
/// emultipole1 + (Cartesian) electric quadrupole moment,
//! \f$ x^2, xy, xz, y^2, yz, z^2 \f$
emultipole2,
/// emultipole2 + (Cartesian) electric octupole moment,
//! \f$ x^3, x^2y, x^2z, xy^2, xyz, xz^2, y^3, y^2z, yz^2, z^3 \f$
emultipole3,
/// \f$ \delta(\vec{r}_1 - \vec{r}_2) \f$
delta,
/// (2-body) Coulomb operator = \f$ r_{12}^{-1} \f$
coulomb,
/// alias for Operator::coulomb
r12_m1 = coulomb,
/// contracted Gaussian geminal
cgtg,
/// contracted Gaussian geminal times Coulomb
cgtg_x_coulomb,
/// |Delta . contracted Gaussian geminal|^2
delcgtg2,
/// anti-Coulomb operator, \f$ r_{12} \f$
r12,
/// alias for Operator::r12
r12_1 = r12,
/// erf-attenuated Coulomb operator,
/// \f$ \mathrm{erf}(\omega r)/r \f$
erf_coulomb,
/// erfc-attenuated Coulomb operator,
/// \f$ \mathrm{erfc}(\omega r)/r \f$
erfc_coulomb,
// do not modify this
invalid = -1,
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!keep this updated!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
first_1body_oper = overlap,
last_1body_oper = emultipole3,
first_2body_oper = delta,
last_2body_oper = erfc_coulomb,
first_oper = first_1body_oper,
last_oper = last_2body_oper
};
/// @return the particle rank of \c oper
inline int rank(Operator oper) {
int n = 0;
if (oper >= Operator::first_1body_oper && oper <= Operator::last_1body_oper)
n = 1;
else if (oper >= Operator::first_2body_oper &&
oper <= Operator::last_2body_oper)
n = 2;
return n;
}
namespace detail {
struct default_operator_traits {
typedef struct {
} oper_params_type;
static oper_params_type default_params() { return oper_params_type{}; }
static constexpr auto nopers = 1u;
typedef struct _core_eval_type {
template <typename... params>
static std::shared_ptr<_core_eval_type> instance(params...) {
return nullptr;
}
} core_eval_type;
};
} // namespace detail
/// describes operator set \c Op
/// @tparam Op a value of type Operator
/// \note default describes operator set of size 1 that takes trivial \c
/// oper_params_type and \c core_eval_type;
/// needs to be specialized for some operator types
template <Operator Op>
struct operator_traits : public detail::default_operator_traits {};
template <>
struct operator_traits<Operator::nuclear>
: public detail::default_operator_traits {
/// point charges and their positions
typedef std::vector<std::pair<real_t, std::array<real_t, 3>>>
oper_params_type;
static oper_params_type default_params() { return oper_params_type{}; }
typedef libint2::FmEval_Taylor<double, 7> core_eval_type;
};
template <>
struct operator_traits<Operator::emultipole1>
: public detail::default_operator_traits {
/// Cartesian coordinates of the origin with respect to which the dipole
/// moment is defined
typedef std::array<double, 3> oper_params_type;
static oper_params_type default_params() {
return oper_params_type{{0,0,0}};
}
static constexpr auto nopers = 4u; //!< overlap + 3 dipole components
};
template <>
struct operator_traits<Operator::emultipole2>
: public operator_traits<Operator::emultipole1> {
static constexpr auto nopers =
operator_traits<Operator::emultipole1>::nopers +
6; //!< overlap + 3 dipoles + 6 quadrupoles
};
template <>
struct operator_traits<Operator::emultipole3>
: public operator_traits<Operator::emultipole1> {
static constexpr auto nopers =
operator_traits<Operator::emultipole2>::nopers + 10;
};
template <>
struct operator_traits<Operator::coulomb>
: public detail::default_operator_traits {
typedef libint2::FmEval_Chebyshev7<real_t> core_eval_type;
};
namespace detail {
template <int K>
struct cgtg_operator_traits : public detail::default_operator_traits {
typedef libint2::GaussianGmEval<real_t, K> core_eval_type;
typedef ContractedGaussianGeminal oper_params_type;
};
} // namespace detail
template <>
struct operator_traits<Operator::cgtg>
: public detail::cgtg_operator_traits<0> {};
template <>
struct operator_traits<Operator::cgtg_x_coulomb>
: public detail::cgtg_operator_traits<-1> {};
template <>
struct operator_traits<Operator::delcgtg2>
: public detail::cgtg_operator_traits<2> {};
template <>
struct operator_traits<Operator::delta>
: public detail::default_operator_traits {
typedef libint2::GenericGmEval<libint2::os_core_ints::delta_gm_eval<real_t>>
core_eval_type;
};
template <>
struct operator_traits<Operator::r12>
: public detail::default_operator_traits {
typedef libint2::GenericGmEval<libint2::os_core_ints::r12_xx_K_gm_eval<real_t, 1>>
core_eval_type;
};
template <>
struct operator_traits<Operator::erf_coulomb>
: public detail::default_operator_traits {
/// the attenuation parameter (0 = zero potential, +infinity = no attenuation)
typedef real_t oper_params_type;
static oper_params_type default_params() {
return oper_params_type{0};
}
typedef libint2::GenericGmEval<libint2::os_core_ints::erf_coulomb_gm_eval<real_t>>
core_eval_type;
};
template <>
struct operator_traits<Operator::erfc_coulomb>
: public detail::default_operator_traits {
/// the attenuation parameter (0 = no attenuation, +infinity = zero potential)
typedef real_t oper_params_type;
static oper_params_type default_params() {
return oper_params_type{0};
}
typedef libint2::GenericGmEval<libint2::os_core_ints::erfc_coulomb_gm_eval<real_t>>
core_eval_type;
};
/// the runtime version of \c operator_traits<oper>::default_params()
libint2::any
default_params(const Operator& oper);
namespace detail {
template <typename core_eval_type>
using __core_eval_pack_type =
compressed_pair<std::shared_ptr<core_eval_type>,
libint2::detail::CoreEvalScratch<core_eval_type>>;
template <Operator Op>
using core_eval_pack_type =
__core_eval_pack_type<typename operator_traits<Op>::core_eval_type>;
}
/// types of shell sets supported by Engine, in chemist notation (i.e. '_'
/// separates particles)
/// \warning macro \c BOOST_PP_NBODY_BRAKET_RANK_TUPLE include the ranks of all
/// brakets in \c BraKet
/// and macro \c BOOST_PP_NBODY_BRAKET_MAX_INDEX must be equal to the
/// max value in this enum
enum class BraKet {
x_x = 0,
xx_xx,
xs_xx,
xx_xs,
xs_xs,
invalid = -1,
first_1body_braket = x_x,
last_1body_braket = x_x,
first_2body_braket = xx_xx,
last_2body_braket = xs_xs,
first_braket = first_1body_braket,
last_braket = last_2body_braket
};
#define BOOST_PP_NBODY_BRAKET_MAX_INDEX 4
/// @return rank of \c braket
inline int rank(BraKet braket) {
int n = 0;
switch (braket) {
case BraKet::x_x:
case BraKet::xs_xs:
n = 2;
break;
case BraKet::xs_xx:
case BraKet::xx_xs:
n = 3;
break;
case BraKet::xx_xx:
n = 4;
break;
default:
assert(false && "missing case in switch");
}
return n;
}
/// @return the default braket for \c oper
inline BraKet default_braket(const Operator& oper) {
BraKet result;
switch (rank(oper)) {
case 1: {
result = BraKet::x_x;
} break;
case 2: {
result = BraKet::xx_xx;
} break;
default:
assert(false && "missing case in switch");
}
return result;
}
constexpr size_t nopers_2body = static_cast<int>(Operator::last_2body_oper) -
static_cast<int>(Operator::first_2body_oper) +
1;
constexpr size_t nbrakets_2body = static_cast<int>(BraKet::last_2body_braket) -
static_cast<int>(BraKet::first_2body_braket) +
1;
constexpr size_t nderivorders_2body = LIBINT2_MAX_DERIV_ORDER + 1;
/**
* Engine computes integrals of operators (or operator sets) specified by
* combination of Operator and BraKet.
* This class deprecates OneBodyEngine and TwoBodyEngine.
*/
class Engine {
private:
typedef struct {
} empty_pod;
public:
static constexpr auto max_ntargets =
std::extent<decltype(std::declval<Libint_t>().targets), 0>::value;
using target_ptr_vec =
std::vector<const real_t*, detail::ext_stack_allocator<const real_t*, max_ntargets>>;
/// creates a default Engine that cannot be used for computing integrals;
/// to be used as placeholder for copying a usable engine, OR for cleanup of
/// thread-local data
Engine()
: oper_(Operator::invalid),
braket_(BraKet::invalid),
primdata_(),
stack_size_(0),
lmax_(-1) {
set_precision(std::numeric_limits<real_t>::epsilon());
}
/// Constructs a (usable) Engine
/// \param oper a value of Operator type
/// \param max_nprim the maximum number of primitives per contracted Gaussian
/// shell
/// \param max_l the maximum angular momentum of Gaussian shell
/// \throw Engine::lmax_exceeded if \c max_l exceeds the angular momentum
/// limit of the library
/// \param deriv_order if not 0, will compute geometric derivatives of
/// Gaussian integrals of order \c deriv_order ,
/// (default=0)
/// \param precision specifies the target precision with which the integrals
/// will be computed; the default is the "epsilon"
/// of \c real_t type, given by \c
/// std::numeric_limits<real_t>::epsilon(). Currently precision control
/// is implemented
/// for two-body integrals only. The precision control is somewhat
/// empirical,
/// hence be conservative. \sa set_precision()
/// \param params a value of type
/// Engine::operator_traits<oper>::oper_params_type specifying the parameters
/// of
/// the operator set, e.g. position and magnitude of the charges
/// creating the Coulomb potential
/// for oper == Operator::nuclear. For most values of \c oper
/// this is not needed.
/// \sa Engine::operator_traits
/// \param braket a value of BraKet type
/// \warning currently only one-contraction Shell objects are supported; i.e.
/// generally-contracted Shells are not yet supported
template <typename Params = empty_pod>
Engine(Operator oper, size_t max_nprim, int max_l, int deriv_order = 0,
real_t precision = std::numeric_limits<real_t>::epsilon(),
Params params = empty_pod(), BraKet braket = BraKet::invalid)
: oper_(oper),
braket_(braket),
spbra_(max_nprim),
spket_(max_nprim),
lmax_(max_l),
deriv_order_(deriv_order),
params_(enforce_params_type(oper, params)) {
set_precision(precision);
initialize(max_nprim);
core_eval_pack_ = make_core_eval_pack(oper); // must follow initialize() to
// ensure default braket_ has
// been set
init_core_ints_params(params_);
}
/// move constructor
// intel does not accept "move ctor = default"
Engine(Engine&& other)
: oper_(other.oper_),
braket_(other.braket_),
primdata_(std::move(other.primdata_)),
spbra_(std::move(other.spbra_)),
spket_(std::move(other.spket_)),
stack_size_(other.stack_size_),
lmax_(other.lmax_),
hard_lmax_(other.hard_lmax_),
deriv_order_(other.deriv_order_),
precision_(other.precision_),
ln_precision_(other.ln_precision_),
core_eval_pack_(std::move(other.core_eval_pack_)),
params_(std::move(other.params_)),
core_ints_params_(std::move(other.core_ints_params_)),
targets_(std::move(other.targets_)),
set_targets_(other.set_targets_),
scratch_(std::move(other.scratch_)),
scratch2_(other.scratch2_),
buildfnptrs_(other.buildfnptrs_) {}
/// (deep) copy constructor
Engine(const Engine& other)
: oper_(other.oper_),
braket_(other.braket_),
primdata_(other.primdata_.size()),
spbra_(other.spbra_),
spket_(other.spket_),
stack_size_(other.stack_size_),
lmax_(other.lmax_),
deriv_order_(other.deriv_order_),
precision_(other.precision_),
ln_precision_(other.ln_precision_),
core_eval_pack_(other.core_eval_pack_),
params_(other.params_),
core_ints_params_(other.core_ints_params_) {
initialize();
}
~Engine() { finalize(); }
/// move assignment is default
Engine& operator=(Engine&& other) {
oper_ = other.oper_;
braket_ = other.braket_;
primdata_ = std::move(other.primdata_);
spbra_ = std::move(other.spbra_);
spket_ = std::move(other.spket_);
stack_size_ = other.stack_size_;
lmax_ = other.lmax_;
hard_lmax_ = other.hard_lmax_;
deriv_order_ = other.deriv_order_;
precision_ = other.precision_;
ln_precision_ = other.ln_precision_;
core_eval_pack_ = std::move(other.core_eval_pack_);
params_ = std::move(other.params_);
core_ints_params_ = std::move(other.core_ints_params_);
targets_ = std::move(other.targets_);
set_targets_ = other.set_targets_;
scratch_ = std::move(other.scratch_);
scratch2_ = other.scratch2_;
buildfnptrs_ = other.buildfnptrs_;
return *this;
}
/// (deep) copy assignment
Engine& operator=(const Engine& other) {
oper_ = other.oper_;
braket_ = other.braket_;
primdata_.resize(other.primdata_.size());
spbra_ = other.spbra_;
spket_ = other.spket_;
stack_size_ = other.stack_size_;
lmax_ = other.lmax_;
deriv_order_ = other.deriv_order_;
precision_ = other.precision_;
ln_precision_ = other.ln_precision_;
core_eval_pack_ = other.core_eval_pack_;
params_ = other.params_;
core_ints_params_ = other.core_ints_params_;
initialize();
return *this;
}
/// returns the particle rank of the operator
int operator_rank() const { return rank(oper_); }
/// rank of the braket
int braket_rank() const { return rank(braket_); }
/// resets operator type
void set_oper(Operator new_oper) {
if (oper_ != new_oper) {
if (rank(new_oper) != operator_rank()) braket_ = BraKet::invalid;
oper_ = new_oper;
initialize();
}
}
/// resets braket type
void set_braket(BraKet new_braket) {
if (braket_ != new_braket) {
braket_ = new_braket;
initialize();
}
}
/// resets operator parameters; this may be useful e.g. if need to compute
/// Coulomb potential
/// integrals over batches of charges for the sake of parallelism.
template <typename Params>
void set_params(const Params& params) {
params_ = params;
init_core_ints_params(params_);
reset_scratch();
}
/// returns a vector that will hold pointers to shell sets computed with
/// Engine::compute()
/// or other compute functions. Only need to get this vector once, but the
/// values will change
/// after every compute() call.
const target_ptr_vec& results() const { return targets_; }
/// reports the number of shell sets that each call to compute() produces.
/// this depends on the order of geometrical derivatives requested and
/// on the operator set. \sa compute_nshellsets()
unsigned int nshellsets() const { return targets_.size(); }
/// Computes target shell sets of integrals.
/// @return vector of pointers to target shell sets, the number of sets = Engine::nshellsets();
/// if the first pointer equals \c nullptr then all elements were screened out.
/// \note resulting shell sets are stored in row-major order.
/// \note Call Engine::compute1() or Engine::compute2() directly to avoid extra copies.
template <typename... ShellPack>
__libint2_engine_inline const target_ptr_vec& compute(
const libint2::Shell& first_shell, const ShellPack&... rest_of_shells);
/// Computes target shell sets of 1-body integrals.
/// @return vector of pointers to target shell sets, the number of sets = Engine::nshellsets()
/// \note resulting shell sets are stored in row-major order
__libint2_engine_inline const target_ptr_vec& compute1(
const libint2::Shell& s1, const libint2::Shell& s2);
/// Computes target shell sets of 2-body integrals.
/// @tparam oper operator
/// @tparam braket the integral type
/// @tparam deriv_order the derivative order, values greater than 2 not yet supported
/// @return vector of pointers to target shell sets, the number of sets = Engine::nshellsets();
/// if the first pointer equals \c nullptr then all elements were screened out.
/// \note resulting shell sets are stored in row-major order
template <Operator oper, BraKet braket, size_t deriv_order>
__libint2_engine_inline const target_ptr_vec& compute2(const Shell& s1,
const Shell& s2,
const Shell& s3,
const Shell& s4);
typedef const target_ptr_vec& (Engine::*compute2_ptr_type)(const Shell& s1,
const Shell& s2,
const Shell& s3,
const Shell& s4);
/** this specifies target precision for computing the integrals.
* target precision \f$ \epsilon \f$ is used in 3 ways:
* (1) to screen out primitive pairs in ShellPair object for which
* \f$ {\rm scr}_{12} = \max|c_1| \max|c_2| \exp(-\rho_{12}
* |AB|^2)/\gamma_{12} < \epsilon \f$ ;
* (2) to screen out primitive quartets outside compute_primdata() for which
* \f$ {\rm scr}_{12} {\rm scr}_{34} < \epsilon \f$;
* (3) to screen out primitive quartets inside compute_primdata() for which
* the prefactor of \f$ F_m(\rho, T) \f$ is smaller
* than \f$ \epsilon \f$ .
*/
void set_precision(real_t prec) {
if (prec <= 0.) {
precision_ = 0.;
ln_precision_ = std::numeric_limits<real_t>::lowest();
} else {
precision_ = prec;
ln_precision_ = std::log(precision_);
}
}
/// @return the target precision for computing the integrals
/// @sa set_precision(real_t)
real_t precision() const { return precision_; }
void print_timers() {
#ifdef LIBINT2_ENGINE_TIMERS
std::cout << "timers: prereq = " << timers.read(0);
#ifndef LIBINT2_PROFILE // if libint's profiling was on, engine's build timer
// will include its overhead
// do not report it, detailed profiling from libint will be printed below
std::cout << " build = " << timers.read(1);
#endif
std::cout << " tform = " << timers.read(2) << std::endl;
#endif
#ifdef LIBINT2_PROFILE
std::cout << "build timers: hrr = " << primdata_[0].timers->read(0)
<< " vrr = " << primdata_[0].timers->read(1) << std::endl;
#endif
#ifdef LIBINT2_ENGINE_TIMERS
#ifdef LIBINT2_ENGINE_PROFILE_CLASS
for (const auto& p : class_profiles) {
printf("{\"%s\", %10.5lf, %10.5lf, %10.5lf, %10.5lf, %ld, %ld},\n",
p.first.to_string().c_str(), p.second.prereqs, p.second.build_vrr,
p.second.build_hrr, p.second.tform, p.second.nshellset,
p.second.nprimset);
}
#endif
#endif
}
/// Exception class to be used when the angular momentum limit is exceeded.
class lmax_exceeded : virtual public std::runtime_error {
public:
lmax_exceeded(const char* task_name, size_t lmax_limit,
size_t lmax_requested)
: std::runtime_error(
"Engine::lmax_exceeded -- angular momentum limit exceeded"),
lmax_limit_(lmax_limit),
lmax_requested_(lmax_requested) {
strncpy(task_name_, task_name, 64);
task_name_[64] = '\0';
}
~lmax_exceeded() noexcept {}
const char* task_name() const {
return static_cast<const char*>(task_name_);
}
size_t lmax_limit() const { return lmax_limit_; }
size_t lmax_requested() const { return lmax_requested_; }
private:
char task_name_[65];
size_t lmax_limit_;
size_t lmax_requested_;
};
private:
Operator oper_;
BraKet braket_;
std::vector<Libint_t> primdata_;
ShellPair spbra_, spket_;
size_t stack_size_; // amount allocated by libint2_init_xxx in
// primdata_[0].stack
int lmax_;
int hard_lmax_; // max L supported by library for this operator type + 1
int deriv_order_;
real_t precision_;
real_t ln_precision_;
any core_eval_pack_;
/// operator params
any params_; // operator params
/// for some operators need core ints params that are computed from operator
/// params,
/// e.g. integrals of \f$ f_{12}^2 \f$ are computed from parameters of \f$
/// f_{12} \f$
any core_ints_params_;
/// makes core ints params from the operator params
void init_core_ints_params(const any& params);
/// pointers to target shell sets, size is updated by reset_scratch()
/// targets_.size() is returned by nshellsets()
target_ptr_vec targets_;
/// true if targets_ does not point primdata_[0].targets
/// hence must set its contents explicitly
bool set_targets_;
std::vector<real_t>
scratch_; // for transposes and/or transforming to solid harmonics
real_t* scratch2_; // &scratch_[0] points to the first block large enough to
// hold all target ints
// scratch2_ points to second such block. It could point into scratch_ or at
// primdata_[0].stack
typedef void (*buildfnptr_t)(const Libint_t*);
buildfnptr_t* buildfnptrs_;
/// reports the number of shell sets that each call to compute() produces.
unsigned int compute_nshellsets() const {
const unsigned int num_operator_geometrical_derivatives =
(oper_ == Operator::nuclear) ? this->nparams() : 0;
const auto ncenters = braket_rank() + num_operator_geometrical_derivatives;
return nopers() * num_geometrical_derivatives(ncenters, deriv_order_);
}
void reset_scratch() {
const auto nshsets = compute_nshellsets();
targets_.resize(nshsets);
set_targets_ = (&targets_[0] != const_cast<const real_t**>(primdata_[0].targets));
const auto ncart_max = (lmax_ + 1) * (lmax_ + 2) / 2;
const auto target_shellset_size =
nshsets * std::pow(ncart_max, braket_rank());
// need to be able to hold 2 sets of target shellsets: the worst case occurs
// when dealing with
// 1-body Coulomb ints derivatives ... have 2+natom 1st-order derivative sets
// (and many more of 2nd and higher) that are stored in scratch
// then need to transform to solids. To avoid copying back and forth make
// sure that there is enough
// room to transform all ints and save them in correct order in single pass
const auto need_extra_large_scratch = stack_size_ < target_shellset_size;
scratch_.resize(need_extra_large_scratch ? 2 * target_shellset_size
: target_shellset_size);
scratch2_ = need_extra_large_scratch ? &scratch_[target_shellset_size]
: primdata_[0].stack;
}
__libint2_engine_inline void compute_primdata(Libint_t& primdata,
const Shell& s1,
const Shell& s2, size_t p1,
size_t p2, size_t oset);
/// 3-dim array of pointers to help dispatch efficiently based on oper_,
/// braket_, and deriv_order_
__libint2_engine_inline const std::vector<Engine::compute2_ptr_type>&
compute2_ptrs() const;
__libint2_engine_inline void initialize(size_t max_nprim = 0);
// generic _initializer
__libint2_engine_inline void _initialize();
void finalize() {
if (primdata_.size() != 0) {
libint2_cleanup_default(&primdata_[0]);
}
} // finalize()
//-------
// utils
//-------
unsigned int nparams() const;
unsigned int nopers() const;
/// if Params == operator_traits<oper>::oper_params_type, will return
/// \c any(params)
/// else will set return \c any initialized with default value for
/// \c operator_traits<type>::oper_params_type
/// @param throw_if_wrong_type if true, and Params !=
/// operator_traits<type>::oper_params_type, will throw std::bad_cast
template <typename Params>
static any enforce_params_type(
Operator oper, const Params& params,
bool throw_if_wrong_type = !std::is_same<Params, empty_pod>::value);
/// @return core eval pack corresponding to
/// operator_traits<oper>::core_eval_type
any make_core_eval_pack(Operator oper) const;
//-------
// profiling
//-------
static const bool skip_core_ints = false;
}; // struct Engine
} // namespace libint2
#ifndef LIBINT2_DOES_NOT_INLINE_ENGINE
#include "./engine.impl.h"
#endif
#endif /* _libint2_src_lib_libint_engine_h_ */
|