This file is indexed.

/usr/include/libint2/solidharmonics.h is in libint2-dev 2.3.0~beta3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
 *  This file is a part of Libint.
 *  Copyright (C) 2004-2014 Edward F. Valeev
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Library General Public License, version 2,
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this program.  If not, see http://www.gnu.org/licenses/.
 *
 */

#ifndef _libint2_src_lib_libint_solidharmonics_h_
#define _libint2_src_lib_libint_solidharmonics_h_

#include <libint2/util/cxxstd.h>
#if LIBINT2_CPLUSPLUS_STD < 2011
# error "The simple Libint API requires C++11 support"
#endif

#include <array>
#include <vector>
#include <algorithm>

#include <libint2/shell.h>
#include <libint2/cgshell_ordering.h>

namespace {
  template <typename Int>
  signed char parity(Int i) {
    return i%2 ? -1 : 1;
  }
}

namespace libint2 {

  namespace solidharmonics {

    // to avoid overhead of Eigen::SparseMatrix will roll our own

    /// Transformation coefficients from unnormalized Cartesian Gaussians (rows) to unit-normalized real Solid Harmonics Gaussians.
    /// \note Implemented as a simple fixed-size CSR sparse matrix
    template <typename Real>
    class SolidHarmonicsCoefficients {
      public:
        typedef ::libint2::real_t real_t;

        SolidHarmonicsCoefficients() : l_(-1) {
        }
        SolidHarmonicsCoefficients(unsigned char l) : l_(l) {
          assert(l <= std::numeric_limits<signed char>::max());
          init();
        }
        // intel does not support "move ctor = default"
        SolidHarmonicsCoefficients(SolidHarmonicsCoefficients&& other) :
          values_(std::move(other.values_)),
          row_offset_(std::move(other.row_offset_)),
          colidx_(std::move(other.colidx_)),
          l_(other.l_) {
        }

        SolidHarmonicsCoefficients(const SolidHarmonicsCoefficients& other) = default;

        void init(unsigned char l) {
          assert(l <= std::numeric_limits<signed char>::max());
          l_ = l;
          init();
        }

        static const SolidHarmonicsCoefficients& instance(unsigned int l) {
          static std::vector<SolidHarmonicsCoefficients> shg_coefs(SolidHarmonicsCoefficients::CtorHelperIter(0),
                                                                   SolidHarmonicsCoefficients::CtorHelperIter(LIBINT_MAX_AM+1));
          assert(l <= LIBINT_MAX_AM);
          return shg_coefs[l];
        }

        /// returns ptr to row values
        const Real* row_values(size_t r) const {
          return &values_[0] + row_offset_[r];
        }
        /// returns ptr to row indices
        const unsigned char* row_idx(size_t r) const {
          return &colidx_[0] + row_offset_[r];
        }
        /// number of nonzero elements in row \c r
        unsigned char nnz(size_t r) const {
          return row_offset_[r+1] - row_offset_[r];
        }

      private:
        std::vector<Real> values_;  // elements
        std::vector<unsigned short> row_offset_; // "pointer" to the beginning of each row
        std::vector<unsigned char> colidx_;  // column indices
        signed char l_;        // the angular momentum quantum number

        void init() {
          const unsigned short npure = 2*l_ + 1;
          const unsigned short ncart = (l_ + 1) * (l_ + 2) / 2;
          std::vector<Real> full_coeff(npure * ncart);

          for(signed char m=-l_; m<=l_; ++m) {
            const signed char pure_idx = m + l_;
            signed char cart_idx = 0;
            signed char lx, ly, lz;
            FOR_CART(lx, ly, lz, l_)
              full_coeff[pure_idx * ncart + cart_idx] = coeff(l_, m, lx, ly, lz);
              //std::cout << "Solid(" << (int)l_ << "," << (int)m << ") += Cartesian(" << (int)lx << "," << (int)ly << "," << (int)lz << ") * " << full_coeff[pure_idx * ncart + cart_idx] << std::endl;
              ++cart_idx;
            END_FOR_CART
          }

          // compress rows
          // 1) count nonzeroes
          size_t nnz = 0;
          for(size_t i=0; i!=full_coeff.size(); ++i)
            nnz += full_coeff[i] == 0.0 ? 0 : 1;
          // 2) allocate
          values_.resize(nnz);
          colidx_.resize(nnz);
          row_offset_.resize(npure+1);
          // 3) copy
          {
            unsigned short pc = 0;
            unsigned short cnt = 0;
            for(unsigned short p=0; p!=npure; ++p) {
              row_offset_[p] = cnt;
              for(unsigned short c=0; c!=ncart; ++c, ++pc) {
                if (full_coeff[pc] != 0.0) {
                  values_[cnt] = full_coeff[pc];
                  colidx_[cnt] = c;
                  ++cnt;
                }
              }
            }
            row_offset_[npure] = cnt;
          }
          // done
        }

        /*!---------------------------------------------------------------------------------------------
          Computes coefficient of a cartesian Gaussian in a real solid harmonic Gaussian
          See IJQC 54, 83 (1995), eqn (15). If m is negative, imaginary part is computed, whereas
          a positive m indicates that the real part of spherical harmonic Ylm is requested.
         ---------------------------------------------------------------------------------------------*/
        static double coeff(int l, int m, int lx, int ly, int lz) {
          using libint2::math::fac;
          using libint2::math::df_Kminus1;
          using libint2::math::bc;

          auto abs_m = std::abs(m);
          if ((lx + ly - abs_m)%2)
            return 0.0;

          auto j = (lx + ly - abs_m)/2;
          if (j < 0)
            return 0.0;

          /*----------------------------------------------------------------------------------------
            Checking whether the cartesian polynomial contributes to the requested component of Ylm
           ----------------------------------------------------------------------------------------*/
          auto comp = (m >= 0) ? 1 : -1;
          /*  if (comp != ((abs_m-lx)%2 ? -1 : 1))*/
          auto i = abs_m-lx;
          if (comp != parity(abs(i)))
            return 0.0;

          assert(l <= 10); // libint2::math::fac[] is only defined up to 20
          Real pfac = sqrt( ((Real(fac[2*lx]*fac[2*ly]*fac[2*lz]))/fac[2*l]) *
                            ((Real(fac[l-abs_m]))/(fac[l])) *
                            (Real(1)/fac[l+abs_m]) *
                            (Real(1)/(fac[lx]*fac[ly]*fac[lz]))
                          );
          /*  pfac = sqrt(fac[l-abs_m]/(fac[l]*fac[l]*fac[l+abs_m]));*/
          pfac /= (1L << l);
          if (m < 0)
            pfac *= parity((i-1)/2);
          else
            pfac *= parity(i/2);

          auto i_min = j;
          auto i_max = (l-abs_m)/2;
          Real sum = 0;
          for(auto i=i_min;i<=i_max;i++) {
            Real pfac1 = bc(l,i)*bc(i,j);
            pfac1 *= (Real(parity(i)*fac[2*(l-i)])/fac[l-abs_m-2*i]);
            Real sum1 = 0.0;
            const int k_min = std::max((lx-abs_m)/2,0);
            const int k_max = std::min(j,lx/2);
            for(int k=k_min;k<=k_max;k++) {
              if (lx-2*k <= abs_m)
                sum1 += bc(j,k)*bc(abs_m,lx-2*k)*parity(k);
            }
            sum += pfac1*sum1;
          }
          sum *= sqrt(Real(df_Kminus1[2*l])/(df_Kminus1[2*lx]*df_Kminus1[2*ly]*df_Kminus1[2*lz]));

          Real result = (m == 0) ? pfac*sum : M_SQRT2*pfac*sum;
          return result;
        }

        struct CtorHelperIter : public std::iterator<std::input_iterator_tag, SolidHarmonicsCoefficients> {
            unsigned int l_;
            using typename std::iterator<std::input_iterator_tag, SolidHarmonicsCoefficients>::value_type;

            CtorHelperIter() = default;
            CtorHelperIter(unsigned int l) : l_(l) {}
            CtorHelperIter(const CtorHelperIter&) = default;
            CtorHelperIter& operator=(const CtorHelperIter& rhs) { l_ = rhs.l_; return *this; }

            CtorHelperIter& operator++() { ++l_; return *this; }
            CtorHelperIter& operator--() { assert(l_ > 0); --l_; return *this; }

            value_type operator*() const {
              return value_type(l_);
            }
            bool operator==(const CtorHelperIter& rhs) const {
              return l_ == rhs.l_;
            }
            bool operator!=(const CtorHelperIter& rhs) const {
              return not (*this == rhs);
            }
        };

    };

    // generic transforms

    template <typename Real>
    void transform_first(size_t l, size_t n2, const Real *src, Real *tgt)
    {
      const auto& coefs = SolidHarmonicsCoefficients<Real>::instance(l);

      const auto n = 2*l+1;
      std::fill(tgt, tgt + n * n2, 0);

      // loop over shg
      for(size_t s=0; s!=n; ++s) {
        const auto nc_s = coefs.nnz(s);      // # of cartesians contributing to shg s
        const auto* c_idxs = coefs.row_idx(s); // indices of cartesians contributing to shg s
        const auto* c_vals = coefs.row_values(s); // coefficients of cartesians contributing to shg s

        const auto tgt_blk_s_offset = s * n2;

        for(size_t ic=0; ic!=nc_s; ++ic) { // loop over contributing cartesians
          const auto c = c_idxs[ic];
          const auto s_c_coeff = c_vals[ic];

          auto src_blk_s = src + c * n2;
          auto tgt_blk_s = tgt + tgt_blk_s_offset;

          // loop over other dims
          for(size_t i2=0; i2!=n2; ++i2, ++src_blk_s, ++tgt_blk_s) {
            *tgt_blk_s += s_c_coeff * *src_blk_s;
          }
        }
      }

    }

    /// transforms two first dimensions of tensor from cartesian to real solid harmonic basis
    template <typename Real>
    void transform_first2(int l1, int l2, size_t inner_dim, const Real* source_blk, Real* target_blk) {
      const auto& coefs1 = SolidHarmonicsCoefficients<Real>::instance(l1);
      const auto& coefs2 = SolidHarmonicsCoefficients<Real>::instance(l2);

      const auto ncart2 = (l2+1)*(l2+2)/2;
      const auto npure1 = 2*l1+1;
      const auto npure2 = 2*l2+1;
      const auto ncart2inner = ncart2 * inner_dim;
      const auto npure2inner = npure2 * inner_dim;
      std::fill(target_blk, target_blk + npure1 * npure2inner, 0);

      // loop over blocks of inner dimension
      const size_t inner_blk_size = 8;
      const size_t nblks = (inner_dim+inner_blk_size-1)/inner_blk_size;
      for(size_t blk=0; blk!=nblks; ++blk) {
        const auto blk_begin = blk * inner_blk_size;
        const auto blk_end = std::min(blk_begin + inner_blk_size,inner_dim);
        const auto blk_size = blk_end - blk_begin;

        // loop over first shg
        for(size_t s1=0; s1!=npure1; ++s1) {
          const auto nc1 = coefs1.nnz(s1);      // # of cartesians contributing to shg s1
          const auto* c1_idxs = coefs1.row_idx(s1); // indices of cartesians contributing to shg s1
          const auto* c1_vals = coefs1.row_values(s1); // coefficients of cartesians contributing to shg s1

          auto target_blk_s1 = target_blk + s1 * npure2inner + blk_begin;

          // loop over second shg
          for(size_t s2=0; s2!=npure2; ++s2) {
            const auto nc2 = coefs2.nnz(s2);      // # of cartesians contributing to shg s2
            const auto* c2_idxs = coefs2.row_idx(s2); // indices of cartesians contributing to shg s2
            const auto* c2_vals = coefs2.row_values(s2); // coefficients of cartesians contributing to shg s2
            const auto s2inner = s2 * inner_dim;
            const auto target_blk_s1_blk_begin = target_blk_s1 + s2inner;

            for(size_t ic1=0; ic1!=nc1; ++ic1) { // loop over contributing cartesians
              auto c1 = c1_idxs[ic1];
              auto s1_c1_coeff = c1_vals[ic1];

              auto source_blk_c1 = source_blk + c1 * ncart2inner + blk_begin;

              for(size_t ic2=0; ic2!=nc2; ++ic2) { // loop over contributing cartesians
                auto c2 = c2_idxs[ic2];
                auto s2_c2_coeff = c2_vals[ic2];
                const auto c2inner = c2 * inner_dim;

                const auto coeff = s1_c1_coeff * s2_c2_coeff;
                const auto source_blk_c1_blk_begin = source_blk_c1 + c2inner;
                for(auto b=0; b<blk_size; ++b)
                  target_blk_s1_blk_begin[b] += source_blk_c1_blk_begin[b] * coeff;

              } // cart2

            } //cart1

          } // shg2

        } // shg1

      } // blk

    } // transform_first2()

    template <typename Real>
    void transform_inner(size_t n1, size_t l, size_t n2, const Real *src, Real *tgt)
    {
      const auto& coefs = SolidHarmonicsCoefficients<Real>::instance(l);

      const auto nc = (l+1)*(l+2)/2;
      const auto n = 2*l+1;
      const auto nc_n2 = nc * n2;
      const auto n_n2 = n * n2;
      std::fill(tgt, tgt + n1 * n_n2, 0);

      // loop over shg
      for(size_t s=0; s!=n; ++s) {
        const auto nc_s = coefs.nnz(s);      // # of cartesians contributing to shg s
        const auto* c_idxs = coefs.row_idx(s); // indices of cartesians contributing to shg s
        const auto* c_vals = coefs.row_values(s); // coefficients of cartesians contributing to shg s

        const auto tgt_blk_s_offset = s * n2;

        for(size_t ic=0; ic!=nc_s; ++ic) { // loop over contributing cartesians
          const auto c = c_idxs[ic];
          const auto s_c_coeff = c_vals[ic];

          auto src_blk_s = src + c * n2;
          auto tgt_blk_s = tgt + tgt_blk_s_offset;

          // loop over other dims
          for(size_t i1=0; i1!=n1; ++i1, src_blk_s+=nc_n2, tgt_blk_s+=n_n2) {
            for(size_t i2=0; i2!=n2; ++i2) {
              tgt_blk_s[i2] += s_c_coeff * src_blk_s[i2];
            }
          }
        }
      }

    }

    /// transforms the last dimension of \c src from cartesian to solid harmonic Gaussians, stores result to \c tgt
    template <typename Real>
    void transform_last(size_t n1, size_t l, const Real *src, Real *tgt)
    {
      const auto& coefs = SolidHarmonicsCoefficients<Real>::instance(l);

      const auto nc = (l+1)*(l+2)/2;
      const auto n = 2*l+1;
      std::fill(tgt, tgt + n1 * n, 0);

      // loop over shg
      for(size_t s=0; s!=n; ++s) {
        const auto nc_s = coefs.nnz(s);      // # of cartesians contributing to shg s
        const auto* c_idxs = coefs.row_idx(s); // indices of cartesians contributing to shg s
        const auto* c_vals = coefs.row_values(s); // coefficients of cartesians contributing to shg s

        const auto tgt_blk_s_offset = s;

        for(size_t ic=0; ic!=nc_s; ++ic) { // loop over contributing cartesians
          const auto c = c_idxs[ic];
          const auto s_c_coeff = c_vals[ic];

          auto src_blk_s = src + c;
          auto tgt_blk_s = tgt + tgt_blk_s_offset;

          // loop over other dims
          for(size_t i1=0; i1!=n1; ++i1, src_blk_s+=nc, tgt_blk_s+=n) {
              *tgt_blk_s += s_c_coeff * *src_blk_s;
          }
        }
      }

    }

    /// transforms the last two dimensions of \c src from cartesian to solid harmonic Gaussians, stores result to \c tgt
    template <typename Real>
    void tform_last2(size_t n1, int l_row, int l_col, const Real* source_blk, Real* target_blk) {
      const auto& coefs_row = SolidHarmonicsCoefficients<Real>::instance(l_row);
      const auto& coefs_col = SolidHarmonicsCoefficients<Real>::instance(l_col);

      const auto ncart_row = (l_row+1)*(l_row+2)/2;
      const auto ncart_col = (l_col+1)*(l_col+2)/2;
      const auto ncart = ncart_row * ncart_col;
      const auto npure_row = 2*l_row+1;
      const auto npure_col = 2*l_col+1;
      const auto npure = npure_row * npure_col;
      std::fill(target_blk, target_blk + n1 * npure, 0);

      for(size_t i1=0; i1!=n1; ++i1, source_blk+=ncart, target_blk+=npure) {
        // loop over row shg
        for(size_t s1=0; s1!=npure_row; ++s1) {
          const auto nc1 = coefs_row.nnz(s1);      // # of cartesians contributing to shg s1
          const auto* c1_idxs = coefs_row.row_idx(s1); // indices of cartesians contributing to shg s1
          const auto* c1_vals = coefs_row.row_values(s1); // coefficients of cartesians contributing to shg s1

          auto target_blk_s1 = target_blk + s1 * npure_col;

          // loop over col shg
          for(size_t s2=0; s2!=npure_col; ++s2) {
            const auto nc2 = coefs_col.nnz(s2);      // # of cartesians contributing to shg s2
            const auto* c2_idxs = coefs_col.row_idx(s2); // indices of cartesians contributing to shg s2
            const auto* c2_vals = coefs_col.row_values(s2); // coefficients of cartesians contributing to shg s2

            for(size_t ic1=0; ic1!=nc1; ++ic1) { // loop over contributing cartesians
              auto c1 = c1_idxs[ic1];
              auto s1_c1_coeff = c1_vals[ic1];

              auto source_blk_c1 = source_blk + c1 * ncart_col;

              for(size_t ic2=0; ic2!=nc2; ++ic2) { // loop over contributing cartesians
                auto c2 = c2_idxs[ic2];
                auto s2_c2_coeff = c2_vals[ic2];

                target_blk_s1[s2] += source_blk_c1[c2] * s1_c1_coeff * s2_c2_coeff;
              } // cart2

            } //cart1

          } // shg2

        } // shg1
      }
    } // tform()

    /// multiplies rows and columns of matrix \c source_blk, stores result to \c target_blk
    template <typename Real>
    void tform(int l_row, int l_col, const Real* source_blk, Real* target_blk) {
      const auto& coefs_row = SolidHarmonicsCoefficients<Real>::instance(l_row);
      const auto& coefs_col = SolidHarmonicsCoefficients<Real>::instance(l_col);

      const auto ncart_col = (l_col+1)*(l_col+2)/2;
      const auto npure_row = 2*l_row+1;
      const auto npure_col = 2*l_col+1;
      std::fill(target_blk, target_blk + npure_row * npure_col, 0);

      // loop over row shg
      for(size_t s1=0; s1!=npure_row; ++s1) {
        const auto nc1 = coefs_row.nnz(s1);      // # of cartesians contributing to shg s1
        const auto* c1_idxs = coefs_row.row_idx(s1); // indices of cartesians contributing to shg s1
        const auto* c1_vals = coefs_row.row_values(s1); // coefficients of cartesians contributing to shg s1

        auto target_blk_s1 = target_blk + s1 * npure_col;

        // loop over col shg
        for(size_t s2=0; s2!=npure_col; ++s2) {
          const auto nc2 = coefs_col.nnz(s2);      // # of cartesians contributing to shg s2
          const auto* c2_idxs = coefs_col.row_idx(s2); // indices of cartesians contributing to shg s2
          const auto* c2_vals = coefs_col.row_values(s2); // coefficients of cartesians contributing to shg s2

          for(size_t ic1=0; ic1!=nc1; ++ic1) { // loop over contributing cartesians
            auto c1 = c1_idxs[ic1];
            auto s1_c1_coeff = c1_vals[ic1];

            auto source_blk_c1 = source_blk + c1 * ncart_col;

            for(size_t ic2=0; ic2!=nc2; ++ic2) { // loop over contributing cartesians
              auto c2 = c2_idxs[ic2];
              auto s2_c2_coeff = c2_vals[ic2];

              target_blk_s1[s2] += source_blk_c1[c2] * s1_c1_coeff * s2_c2_coeff;
            } // cart2

          } //cart1

        } // shg2

      } // shg1
    } // transform_last2()

    /// multiplies columns of matrix \c source_blk, stores result to \c target_blk
    template <typename Real>
    void tform_cols(size_t nrow, int l_col, const Real* source_blk, Real* target_blk) {
      return transform_last(nrow, l_col, source_blk, target_blk);
      const auto& coefs_col = SolidHarmonicsCoefficients<Real>::instance(l_col);

      const auto ncart_col = (l_col+1)*(l_col+2)/2;
      const auto npure_col = 2*l_col+1;

      // loop over rows
      for(size_t r1=0; r1!=nrow; ++r1) {

        auto source_blk_r1 = source_blk + r1 * ncart_col;
        auto target_blk_r1 = target_blk + r1 * npure_col;

        // loop over col shg
        for(size_t s2=0; s2!=npure_col; ++s2) {
          const auto nc2 = coefs_col.nnz(s2);      // # of cartesians contributing to shg s2
          const auto* c2_idxs = coefs_col.row_idx(s2); // indices of cartesians contributing to shg s2
          const auto* c2_vals = coefs_col.row_values(s2); // coefficients of cartesians contributing to shg s2

          Real r1_s2_value = 0.0;

          for(size_t ic2=0; ic2!=nc2; ++ic2) { // loop over contributing cartesians
            auto c2 = c2_idxs[ic2];
            auto s2_c2_coeff = c2_vals[ic2];

            r1_s2_value += source_blk_r1[c2] * s2_c2_coeff;

          } // cart2

          target_blk_r1[s2] = r1_s2_value;

        } // shg1

      } // rows

    } // tform_cols()

    /// multiplies rows of matrix \c source_blk, stores result to \c target_blk
    template <typename Real>
    void tform_rows(int l_row, size_t ncol,  const Real* source_blk, Real* target_blk) {
      return transform_first(l_row, ncol, source_blk, target_blk);
      const auto& coefs_row = SolidHarmonicsCoefficients<Real>::instance(l_row);

      const auto npure_row = 2*l_row+1;

      // loop over row shg
      for(size_t s1=0; s1!=npure_row; ++s1) {
        const auto nc1 = coefs_row.nnz(s1);      // # of cartesians contributing to shg s1
        const auto* c1_idxs = coefs_row.row_idx(s1); // indices of cartesians contributing to shg s1
        const auto* c1_vals = coefs_row.row_values(s1); // coefficients of cartesians contributing to shg s1

        auto target_blk_s1 = target_blk + s1 * ncol;

        // loop over cols
        for(size_t c2=0; c2!=ncol; ++c2) {

          Real s1_c2_value = 0.0;
          auto source_blk_c2_offset = source_blk + c2;

          for(size_t ic1=0; ic1!=nc1; ++ic1) { // loop over contributing cartesians
            auto c1 = c1_idxs[ic1];
            auto s1_c1_coeff = c1_vals[ic1];

            s1_c2_value += source_blk_c2_offset[c1 * ncol] * s1_c1_coeff;

          } //cart1

          target_blk_s1[c2] = s1_c2_value;

        } // shg2

      } // shg1
    } // tform_rows();

    /// transforms matrix from cartesian to real solid harmonic basis
    template <typename Real, typename Shell> // Shell = libint2::Shell::Contraction
    void tform(const Shell& shell_row, const Shell& shell_col, const Real* source_blk, Real* target_blk) {
      const auto trow = shell_row.pure;
      const auto tcol = shell_col.pure;
      if (trow) {
        if (tcol) {
          //tform(shell_row.l, shell_col.l, source_blk, target_blk);
          Real localscratch[500];
          tform_cols(shell_row.cartesian_size(), shell_col.l, source_blk, &localscratch[0]);
          tform_rows(shell_row.l, shell_col.size(), &localscratch[0], target_blk);
        }
        else
          tform_rows(shell_row.l, shell_col.cartesian_size(), source_blk, target_blk);
      }
      else
        tform_cols(shell_row.cartesian_size(), shell_col.l, source_blk, target_blk);
    }

  } // namespace libint2::solidharmonics

} // namespace libint2

#endif /* _libint2_src_lib_libint_solidharmonics_h_ */