/usr/include/irrlicht/line2d.h is in libirrlicht-dev 1.8.4+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | // Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __IRR_LINE_2D_H_INCLUDED__
#define __IRR_LINE_2D_H_INCLUDED__
#include "irrTypes.h"
#include "vector2d.h"
namespace irr
{
namespace core
{
//! 2D line between two points with intersection methods.
template <class T>
class line2d
{
public:
//! Default constructor for line going from (0,0) to (1,1).
line2d() : start(0,0), end(1,1) {}
//! Constructor for line between the two points.
line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {}
//! Constructor for line between the two points given as vectors.
line2d(const vector2d<T>& start, const vector2d<T>& end) : start(start), end(end) {}
//! Copy constructor.
line2d(const line2d<T>& other) : start(other.start), end(other.end) {}
// operators
line2d<T> operator+(const vector2d<T>& point) const { return line2d<T>(start + point, end + point); }
line2d<T>& operator+=(const vector2d<T>& point) { start += point; end += point; return *this; }
line2d<T> operator-(const vector2d<T>& point) const { return line2d<T>(start - point, end - point); }
line2d<T>& operator-=(const vector2d<T>& point) { start -= point; end -= point; return *this; }
bool operator==(const line2d<T>& other) const
{ return (start==other.start && end==other.end) || (end==other.start && start==other.end);}
bool operator!=(const line2d<T>& other) const
{ return !(start==other.start && end==other.end) || (end==other.start && start==other.end);}
// functions
//! Set this line to new line going through the two points.
void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);}
//! Set this line to new line going through the two points.
void setLine(const vector2d<T>& nstart, const vector2d<T>& nend){start.set(nstart); end.set(nend);}
//! Set this line to new line given as parameter.
void setLine(const line2d<T>& line){start.set(line.start); end.set(line.end);}
//! Get length of line
/** \return Length of the line. */
T getLength() const { return start.getDistanceFrom(end); }
//! Get squared length of the line
/** \return Squared length of line. */
T getLengthSQ() const { return start.getDistanceFromSQ(end); }
//! Get middle of the line
/** \return center of the line. */
vector2d<T> getMiddle() const
{
return (start + end)/(T)2;
}
//! Get the vector of the line.
/** \return The vector of the line. */
vector2d<T> getVector() const { return vector2d<T>(end.X - start.X, end.Y - start.Y); }
//! Tests if this line intersects with another line.
/** \param l: Other line to test intersection with.
\param checkOnlySegments: Default is to check intersection between the begin and endpoints.
When set to false the function will check for the first intersection point when extending the lines.
\param out: If there is an intersection, the location of the
intersection will be stored in this vector.
\return True if there is an intersection, false if not. */
bool intersectWith(const line2d<T>& l, vector2d<T>& out, bool checkOnlySegments=true) const
{
// Uses the method given at:
// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
const f32 commonDenominator = (f32)(l.end.Y - l.start.Y)*(end.X - start.X) -
(l.end.X - l.start.X)*(end.Y - start.Y);
const f32 numeratorA = (f32)(l.end.X - l.start.X)*(start.Y - l.start.Y) -
(l.end.Y - l.start.Y)*(start.X -l.start.X);
const f32 numeratorB = (f32)(end.X - start.X)*(start.Y - l.start.Y) -
(end.Y - start.Y)*(start.X -l.start.X);
if(equals(commonDenominator, 0.f))
{
// The lines are either coincident or parallel
// if both numerators are 0, the lines are coincident
if(equals(numeratorA, 0.f) && equals(numeratorB, 0.f))
{
// Try and find a common endpoint
if(l.start == start || l.end == start)
out = start;
else if(l.end == end || l.start == end)
out = end;
// now check if the two segments are disjunct
else if (l.start.X>start.X && l.end.X>start.X && l.start.X>end.X && l.end.X>end.X)
return false;
else if (l.start.Y>start.Y && l.end.Y>start.Y && l.start.Y>end.Y && l.end.Y>end.Y)
return false;
else if (l.start.X<start.X && l.end.X<start.X && l.start.X<end.X && l.end.X<end.X)
return false;
else if (l.start.Y<start.Y && l.end.Y<start.Y && l.start.Y<end.Y && l.end.Y<end.Y)
return false;
// else the lines are overlapping to some extent
else
{
// find the points which are not contributing to the
// common part
vector2d<T> maxp;
vector2d<T> minp;
if ((start.X>l.start.X && start.X>l.end.X && start.X>end.X) || (start.Y>l.start.Y && start.Y>l.end.Y && start.Y>end.Y))
maxp=start;
else if ((end.X>l.start.X && end.X>l.end.X && end.X>start.X) || (end.Y>l.start.Y && end.Y>l.end.Y && end.Y>start.Y))
maxp=end;
else if ((l.start.X>start.X && l.start.X>l.end.X && l.start.X>end.X) || (l.start.Y>start.Y && l.start.Y>l.end.Y && l.start.Y>end.Y))
maxp=l.start;
else
maxp=l.end;
if (maxp != start && ((start.X<l.start.X && start.X<l.end.X && start.X<end.X) || (start.Y<l.start.Y && start.Y<l.end.Y && start.Y<end.Y)))
minp=start;
else if (maxp != end && ((end.X<l.start.X && end.X<l.end.X && end.X<start.X) || (end.Y<l.start.Y && end.Y<l.end.Y && end.Y<start.Y)))
minp=end;
else if (maxp != l.start && ((l.start.X<start.X && l.start.X<l.end.X && l.start.X<end.X) || (l.start.Y<start.Y && l.start.Y<l.end.Y && l.start.Y<end.Y)))
minp=l.start;
else
minp=l.end;
// one line is contained in the other. Pick the center
// of the remaining points, which overlap for sure
out = core::vector2d<T>();
if (start != maxp && start != minp)
out += start;
if (end != maxp && end != minp)
out += end;
if (l.start != maxp && l.start != minp)
out += l.start;
if (l.end != maxp && l.end != minp)
out += l.end;
out.X = (T)(out.X/2);
out.Y = (T)(out.Y/2);
}
return true; // coincident
}
return false; // parallel
}
// Get the point of intersection on this line, checking that
// it is within the line segment.
const f32 uA = numeratorA / commonDenominator;
if(checkOnlySegments && (uA < 0.f || uA > 1.f) )
return false; // Outside the line segment
const f32 uB = numeratorB / commonDenominator;
if(checkOnlySegments && (uB < 0.f || uB > 1.f))
return false; // Outside the line segment
// Calculate the intersection point.
out.X = (T)(start.X + uA * (end.X - start.X));
out.Y = (T)(start.Y + uA * (end.Y - start.Y));
return true;
}
//! Get unit vector of the line.
/** \return Unit vector of this line. */
vector2d<T> getUnitVector() const
{
T len = (T)(1.0 / getLength());
return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
}
//! Get angle between this line and given line.
/** \param l Other line for test.
\return Angle in degrees. */
f64 getAngleWith(const line2d<T>& l) const
{
vector2d<T> vect = getVector();
vector2d<T> vect2 = l.getVector();
return vect.getAngleWith(vect2);
}
//! Tells us if the given point lies to the left, right, or on the line.
/** \return 0 if the point is on the line
<0 if to the left, or >0 if to the right. */
T getPointOrientation(const vector2d<T>& point) const
{
return ( (end.X - start.X) * (point.Y - start.Y) -
(point.X - start.X) * (end.Y - start.Y) );
}
//! Check if the given point is a member of the line
/** \return True if point is between start and end, else false. */
bool isPointOnLine(const vector2d<T>& point) const
{
T d = getPointOrientation(point);
return (d == 0 && point.isBetweenPoints(start, end));
}
//! Check if the given point is between start and end of the line.
/** Assumes that the point is already somewhere on the line. */
bool isPointBetweenStartAndEnd(const vector2d<T>& point) const
{
return point.isBetweenPoints(start, end);
}
//! Get the closest point on this line to a point
/** \param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
When set to false the function will check for the first the closest point on the the line even when outside the segment. */
vector2d<T> getClosestPoint(const vector2d<T>& point, bool checkOnlySegments=true) const
{
vector2d<f64> c((f64)(point.X-start.X), (f64)(point.Y- start.Y));
vector2d<f64> v((f64)(end.X-start.X), (f64)(end.Y-start.Y));
f64 d = v.getLength();
if ( d == 0 ) // can't tell much when the line is just a single point
return start;
v /= d;
f64 t = v.dotProduct(c);
if ( checkOnlySegments )
{
if (t < 0) return vector2d<T>((T)start.X, (T)start.Y);
if (t > d) return vector2d<T>((T)end.X, (T)end.Y);
}
v *= t;
return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
}
//! Start point of the line.
vector2d<T> start;
//! End point of the line.
vector2d<T> end;
};
// partial specialization to optimize <f32> lines (avoiding casts)
template <>
inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df& point, bool checkOnlySegments) const
{
vector2df c = point - start;
vector2df v = end - start;
f32 d = (f32)v.getLength();
if ( d == 0 ) // can't tell much when the line is just a single point
return start;
v /= d;
f32 t = v.dotProduct(c);
if ( checkOnlySegments )
{
if (t < 0) return start;
if (t > d) return end;
}
v *= t;
return start + v;
}
//! Typedef for an f32 line.
typedef line2d<f32> line2df;
//! Typedef for an integer line.
typedef line2d<s32> line2di;
} // end namespace core
} // end namespace irr
#endif
|