/usr/include/itpp/base/random.h is in libitpp-dev 4.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | /*!
* \file
* \brief Definition of classes for random number generators
* \author Tony Ottosson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef RANDOM_H
#define RANDOM_H
#include <itpp/base/random_dsfmt.h>
#include <itpp/base/operators.h>
#include <itpp/itexports.h>
namespace itpp
{
/*! \addtogroup randgen
Set of functions to work with global seed provider:
\code
void GlobalRNG_reset(unsigned int seed);
void GlobalRNG_reset();
unsigned int GlobalRNG_get_local_seed();
void GlobalRNG_randomize();
void GlobalRNG_get_state(ivec &state);
void GlobalRNG_set_state(const ivec &state);
\endcode
Global seed provider generate default seeds to initialize per-thread generators
of pseudo-random numbers. Functions implement mutually exclusive access to the
global seed provider instance.
Be carefull,
Mutual exclusion serializes access to the global seed provider
context and protects its integrity. It does not guarantee the expected results
if global seed provider is accessed simultaneously from several threads.
For example,
\code
ivec st_before,st_after;
GlobalRNG_get_state(st_before);
GlobalRNG_set_state(st_before);
GlobalRNG_get_state(st_after);
assert(st_before==st_after);
\endcode
last assert can fail in multithreaded environment.
Be aware,
Global seed provider generates seeds to initialize non-initialized per-thread RNG contexts.
Global seed provider is just a random numbers generator starting with default seed equal to
4257U. When RNGs are created in some thread, global seed provider is queried for the new seed to
initialize random number generation in the current thread.
The first seed returned by the global seed provider is also 4257U by default. Other
seeds are taken from the rng output directly. It is implemented this way because some ITPP tests
implicitly rely on this value. Global seed provider internals are defined in random.cpp and can be changed
easily if such a behaviour is not desirable.
Global initialization can be overriden by the explicit call of the local context initialization function.
Global seed provider changes will not affect already initialized contexts in running or parked threads, since
global seeds are used during the local context initialization only.
Local contexts get initialized upon creation of first RandomGenerator object in each thread. RNG_reset() without
arguments can also query a global seed if local context is not initialized when the function is called.
For example, if you want the main thread context to be affected by global settings,
GlobalRNG_reset(seed) shall be called BEFORE the construction of first RandomGenerator object.
The best place to do it is the very beginning of your main() function.
If you create itpp library objects, encapsulating RNGs, statically, the main thread context will not be
affected by any call to GlobalRNG_reset(s)/GlobalRNG_set_state(s). If you still want to
have main-thread state be derived from the global context, you should do the following trick
at the beginning of main():
\code
unsigned int my_global_seed = 0xAAAAAAAA;
GlobalRNG_reset(my_global_seed);
unsigned int s = GlobalRNG_get_local_seed(); //query new local seed
RNG_reset(s); //set it maually for the main thread
//you can call your main-thread RNGs here
\endcode
@{ */
//! Set the internal seed of the Global Seed Provider
ITPP_EXPORT void GlobalRNG_reset(unsigned int seed);
//! Reset the internal seed of the Global Seed Provider to the previously set value
ITPP_EXPORT void GlobalRNG_reset();
//! Get new seed to initialize thread-local generators
ITPP_EXPORT unsigned int GlobalRNG_get_local_seed();
//! Set a random seed for the Global Seed Provider seed
ITPP_EXPORT void GlobalRNG_randomize();
//! Save current full state of global seed provider in memory
ITPP_EXPORT void GlobalRNG_get_state(ivec &state);
//! Resume the global seed provider state saved in memory
ITPP_EXPORT void GlobalRNG_set_state(const ivec &state);
//!@}
/*! \addtogroup randgen
Local (per-thread) RNG context management.
\code
void RNG_reset(unsigned int seed);
void RNG_reset();
void RNG_get_state(ivec &state);
void RNG_set_state(const ivec &state);
\endcode
This set of functions allow to override seed value set from global seed provider and
use custom seeds/initialization vectors for each thread (including main thread).
@{ */
//! Set the seed for all Random Number Generators in the current thread
ITPP_EXPORT void RNG_reset(unsigned int seed);
/*!
\brief Reset the seed to the previously set value for all Random Number Generators in the current thread.
Seed will be queried from the global
seed provider if Random Number generation context is not initialized
*/
ITPP_EXPORT void RNG_reset();
//! Set a random seed for all Random Number Generators in the current thread
ITPP_EXPORT void RNG_randomize();
//! Save Random Number generation context used in the current thread
ITPP_EXPORT void RNG_get_state(ivec &state);
//! Resume Random Number generation in the current thread with previously stored context
ITPP_EXPORT void RNG_set_state(const ivec &state);
//!@}
/*!
*\ingroup randgen
*\brief Base class for random (stochastic) sources.
*
* Random_Generator provides thread-safe generation of pseudo-random numbers
*
* \sa DSFMT
*/
class ITPP_EXPORT Random_Generator
{
typedef random_details::ActiveDSFMT DSFMT;
public:
//! Default constructor
Random_Generator(): _dsfmt(random_details::lc_get()) {
if(!random_details::lc_is_initialized()) {
_dsfmt.init_gen_rand(GlobalRNG_get_local_seed());
random_details::lc_mark_initialized();
}
}
//Constructor using a certain seed - do not want to provide it. Use free-standing functions to change per-thread local seed
//Random_Generator(unsigned int seed) { init_gen_rand(seed); random_details::lc_mark_initialized();}
//provide wrappers for DSFMT algorithm functions
//Set the seed to a semi-random value (based on hashed time and clock) - do not want to provide it. Use free-standing functions to change per-thread local seed
//void randomize(){RNG_randomize();}
//Reset the generator with the same seed as used last time - do not want to provide it. Use free-standing functions to change per-thread local seed
//void reset() {RNG_reset();}
//Initialise the generator with a new seed (\sa init_gen_rand()) - do not want to provide it. Use free-standing functions to change per-thread local seed
//void reset(unsigned int seed) { RNG_reset(seed); }
//Resume the state of the generator from a previously saved ivec - do not want to provide it. Use free-standing functions to change per-thread local seed
//void set_state(const ivec &state) {RNG_set_state(state);}
//Return current state of generator in the form of ivec - do not want to provide it. Use free-standing functions to change per-thread local seed
//ivec get_state() const {ivec ret; RNG_get_state(ret); return ret; }
//! Return a uniformly distributed (0,1) value.
double random_01() { return genrand_open_open(); }
//! Return a uniformly distributed [0,1) value.
double random_01_lclosed() { return genrand_close_open(); }
//! Return a uniformly distributed (0,1] value.
double random_01_rclosed() { return genrand_open_close(); }
//! Return a uniformly distributed [0, UINT_MAX) value.
uint32_t random_int() { return genrand_uint32(); }
//! Generate uniform [0, UINT_MAX) integer pseudorandom number.
uint32_t genrand_uint32() { return _dsfmt.genrand_uint32(); }
/*!
* \brief Generate uniform [1, 2) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [1, 2). This is
* the primitive and faster than generating numbers in other ranges.
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
double genrand_close1_open2() { return _dsfmt.genrand_close1_open2(); }
/*!
* \brief Generate uniform [0, 1) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range [0, 1).
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
double genrand_close_open() { return genrand_close1_open2() - 1.0; }
/*!
* \brief Generate uniform (0, 1] double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1].
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
double genrand_open_close() { return 2.0 - genrand_close1_open2(); }
/*!
* \brief Generate uniform (0, 1) double pseudorandom number.
*
* This function generates and returns double precision pseudorandom
* number which distributes uniformly in the range (0, 1).
* \c init_gen_rand() must be called before this function.
* \return double precision floating point pseudorandom number
*/
double genrand_open_open() { return _dsfmt.genrand_open_open();}
private:
DSFMT _dsfmt;
};
/*!
\brief Bernoulli distribution
\ingroup randgen
*/
class ITPP_EXPORT Bernoulli_RNG
{
public:
//! Binary source with probability prob for a 1
Bernoulli_RNG(double prob) { setup(prob); }
//! Binary source with probability prob for a 1
Bernoulli_RNG() { p = 0.5; }
//! set the probability
void setup(double prob) {
it_assert(prob >= 0.0 && prob <= 1.0, "The Bernoulli source probability "
"must be between 0 and 1");
p = prob;
}
//! return the probability
double get_setup() const { return p; }
//! Get one sample.
bin operator()() { return sample(); }
//! Get a sample vector.
bvec operator()(int n) { bvec temp(n); sample_vector(n, temp); return temp; }
//! Get a sample matrix.
bmat operator()(int h, int w) { bmat temp(h, w); sample_matrix(h, w, temp); return temp; }
//! Get a sample
bin sample() { return RNG.genrand_close_open() < p ? bin(1) : bin(0); }
//! Get a sample vector.
void sample_vector(int size, bvec &out) {
out.set_size(size, false);
for(int i = 0; i < size; i++) out(i) = sample();
}
//! Get a sample matrix.
void sample_matrix(int rows, int cols, bmat &out) {
out.set_size(rows, cols, false);
for(int i = 0; i < rows * cols; i++) out(i) = sample();
}
protected:
private:
//!
double p;
//!
Random_Generator RNG;
};
/*!
\brief Integer uniform distribution
\ingroup randgen
Example: Generation of random uniformly distributed integers in the interval [0,10].
\code
#include "itpp/sigproc.h"
int main() {
I_Uniform_RNG gen(0, 10);
cout << gen() << endl; // prints a random integer
cout << gen(10) << endl; // prints 10 random integers
}
\endcode
*/
class ITPP_EXPORT I_Uniform_RNG
{
public:
//! constructor. Sets min and max values.
I_Uniform_RNG(int min = 0, int max = 1);
//! set min and max values
void setup(int min, int max);
//! get the parameters
void get_setup(int &min, int &max) const;
//! Get one sample.
int operator()() { return sample(); }
//! Get a sample vector.
ivec operator()(int n);
//! Get a sample matrix.
imat operator()(int h, int w);
//! Return a single value from this random generator
int sample() {
return floor_i(RNG.genrand_close_open() * (hi - lo + 1)) + lo;
}
private:
//!
int lo;
//!
int hi;
//!
Random_Generator RNG;
};
/*!
\brief Uniform distribution
\ingroup randgen
*/
class ITPP_EXPORT Uniform_RNG
{
public:
//! Constructor. Set min, max and seed.
Uniform_RNG(double min = 0, double max = 1.0);
//! set min and max
void setup(double min, double max);
//! get parameters
void get_setup(double &min, double &max) const;
//! Get one sample.
double operator()() { return (sample() * (hi_bound - lo_bound) + lo_bound); }
//! Get a sample vector.
vec operator()(int n) {
vec temp(n);
sample_vector(n, temp);
temp *= hi_bound - lo_bound;
temp += lo_bound;
return temp;
}
//! Get a sample matrix.
mat operator()(int h, int w) {
mat temp(h, w);
sample_matrix(h, w, temp);
temp *= hi_bound - lo_bound;
temp += lo_bound;
return temp;
}
//! Get a Uniformly distributed [0,1) sample
double sample() { return RNG.genrand_close_open(); }
//! Get a Uniformly distributed [0,1) vector
void sample_vector(int size, vec &out) {
out.set_size(size, false);
for(int i = 0; i < size; i++) out(i) = sample();
}
//! Get a Uniformly distributed [0,1) matrix
void sample_matrix(int rows, int cols, mat &out) {
out.set_size(rows, cols, false);
for(int i = 0; i < rows * cols; i++) out(i) = sample();
}
protected:
private:
//!
double lo_bound, hi_bound;
//!
Random_Generator RNG;
};
/*!
\brief Exponential distribution
\ingroup randgen
*/
class ITPP_EXPORT Exponential_RNG
{
public:
//! constructor. Set lambda.
Exponential_RNG(double lambda = 1.0);
//! Set lambda
void setup(double lambda) { l = lambda; }
//! get lambda
double get_setup() const;
//! Get one sample.
double operator()() { return sample(); }
//! Get a sample vector.
vec operator()(int n);
//! Get a sample matrix.
mat operator()(int h, int w);
private:
double sample() { return (-std::log(RNG.genrand_open_close()) / l); }
double l;
Random_Generator RNG;
};
/*!
* \brief Normal distribution
* \ingroup randgen
*
* Normal (Gaussian) random variables, using a simplified Ziggurat method.
*
* For details see the following arcticle: George Marsaglia, Wai Wan
* Tsang, "The Ziggurat Method for Generating Random Variables", Journal
* of Statistical Software, vol. 5 (2000), no. 8
*
* This implementation is based on the generator written by Jochen Voss
* found at http://seehuhn.de/comp/ziggurat/, which is also included in
* the GSL library (randlist/gauss.c).
*/
class ITPP_EXPORT Normal_RNG
{
public:
//! Constructor. Set mean and variance.
Normal_RNG(double meanval, double variance):
mean(meanval), sigma(std::sqrt(variance)) {}
//! Constructor. Set mean and variance.
Normal_RNG(): mean(0.0), sigma(1.0) {}
//! Set mean, and variance
void setup(double meanval, double variance)
{ mean = meanval; sigma = std::sqrt(variance); }
//! Get mean and variance
void get_setup(double &meanval, double &variance) const;
//! Get one sample.
double operator()() { return (sigma * sample() + mean); }
//! Get a sample vector.
vec operator()(int n) {
vec temp(n);
sample_vector(n, temp);
temp *= sigma;
temp += mean;
return temp;
}
//! Get a sample matrix.
mat operator()(int h, int w) {
mat temp(h, w);
sample_matrix(h, w, temp);
temp *= sigma;
temp += mean;
return temp;
}
//! Get a Normal distributed (0,1) sample
double sample();
//! Get a Normal distributed (0,1) vector
void sample_vector(int size, vec &out) {
out.set_size(size, false);
for(int i = 0; i < size; i++) out(i) = sample();
}
//! Get a Normal distributed (0,1) matrix
void sample_matrix(int rows, int cols, mat &out) {
out.set_size(rows, cols, false);
for(int i = 0; i < rows * cols; i++) out(i) = sample();
}
private:
double mean, sigma;
static const double ytab[128];
static const unsigned int ktab[128];
static const double wtab[128];
static const double PARAM_R;
Random_Generator RNG;
};
/*!
* \brief Gamma distribution
* \ingroup randgen
*
* Generate samples from Gamma(alpha,beta) density, according to the
* following equation:
* \f[ x \sim \Gamma(\alpha,\beta) =
* \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1} \exp(-\beta x) \f]
*
* For \f$\alpha=1\f$ the Gamma distribution is equivalent to the
* Exponential distribution.
*
* \note The implementation of the sample() function was adapted from the
* R statistical language.
* \author Vasek Smidl
*/
class ITPP_EXPORT Gamma_RNG
{
public:
//! Constructor, which sets alpha (a) and beta (b)
Gamma_RNG(double a = 1.0, double b = 1.0): alpha(a), beta(b) {init_state();}
//! Set alpha and beta
void setup(double a, double b) { alpha = a; beta = b; }
//! Get one sample
double operator()() { return sample(); }
//! Get a sample vector
vec operator()(int n);
//! Get a sample matrix
mat operator()(int r, int c);
//! Get a sample
double sample();
private:
//! Initializer of state variables
void init_state();
//! shape parameter of Gamma distribution
double alpha;
//! inverse scale parameter of Gamma distribution
double beta;
Random_Generator RNG;
Normal_RNG NRNG;
/* State variables - used in Gamma_Rng::sample()*/
double _s, _s2, _d, _scale;
double _q0, _b, _si, _c;
};
/*!
\brief Laplacian distribution
\ingroup randgen
*/
class ITPP_EXPORT Laplace_RNG
{
public:
//! Constructor. Set mean and variance.
Laplace_RNG(double meanval = 0.0, double variance = 1.0);
//! Set mean and variance
void setup(double meanval, double variance);
//! Get mean and variance
void get_setup(double &meanval, double &variance) const;
//! Get one sample.
double operator()() { return sample(); }
//! Get a sample vector.
vec operator()(int n);
//! Get a sample matrix.
mat operator()(int h, int w);
//! Returns a single sample
double sample() {
double u = RNG.genrand_open_open();
double l = sqrt_12var;
if(u < 0.5)
l *= std::log(2.0 * u);
else
l *= -std::log(2.0 * (1 - u));
return (l + mean);
}
private:
double mean, var, sqrt_12var;
Random_Generator RNG;
};
/*!
\brief A Complex Normal Source
\ingroup randgen
*/
class ITPP_EXPORT Complex_Normal_RNG
{
public:
//! Constructor. Set mean and variance.
Complex_Normal_RNG(std::complex<double> mean, double variance):
norm_factor(1.0 / std::sqrt(2.0)) {
setup(mean, variance);
}
//! Default constructor
Complex_Normal_RNG(): m_re(0.0), m_im(0.0), sigma(1.0), norm_factor(1.0 / std::sqrt(2.0)) {}
//! Set mean and variance
void setup(std::complex<double> mean, double variance) {
m_re = mean.real();
m_im = mean.imag();
sigma = std::sqrt(variance);
}
//! Get mean and variance
void get_setup(std::complex<double> &mean, double &variance) {
mean = std::complex<double>(m_re, m_im);
variance = sigma * sigma;
}
//! Get one sample.
std::complex<double> operator()() { return sigma * sample() + std::complex<double>(m_re, m_im); }
//! Get a sample vector.
cvec operator()(int n) {
cvec temp(n);
sample_vector(n, temp);
temp *= sigma;
temp += std::complex<double>(m_re, m_im);
return temp;
}
//! Get a sample matrix.
cmat operator()(int h, int w) {
cmat temp(h, w);
sample_matrix(h, w, temp);
temp *= sigma;
temp += std::complex<double>(m_re, m_im);
return temp;
}
//! Get a Complex Normal (0,1) distributed sample
std::complex<double> sample() {
double a = nRNG.sample() * norm_factor;
double b = nRNG.sample() * norm_factor;
return std::complex<double>(a, b);
}
//! Get a Complex Normal (0,1) distributed vector
void sample_vector(int size, cvec &out) {
out.set_size(size, false);
for(int i = 0; i < size; i++) out(i) = sample();
}
//! Get a Complex Normal (0,1) distributed matrix
void sample_matrix(int rows, int cols, cmat &out) {
out.set_size(rows, cols, false);
for(int i = 0; i < rows * cols; i++) out(i) = sample();
}
//! Dummy assignment operator - MSVC++ warning C4512
Complex_Normal_RNG & operator=(const Complex_Normal_RNG&) { return *this; }
private:
double m_re;
double m_im;
double sigma;
const double norm_factor;
Normal_RNG nRNG;
};
/*!
\brief Filtered normal distribution
\ingroup randgen
*/
class ITPP_EXPORT AR1_Normal_RNG
{
public:
//! Constructor. Set mean, variance, and correlation.
AR1_Normal_RNG(double meanval = 0.0, double variance = 1.0,
double rho = 0.0);
//! Set mean, variance, and correlation
void setup(double meanval, double variance, double rho);
//! Get mean, variance and correlation
void get_setup(double &meanval, double &variance, double &rho) const;
//! Set memory contents to zero
void reset();
//! Get a single random sample
double operator()() { return sample(); }
//! Get a sample vector.
vec operator()(int n);
//! Get a sample matrix.
mat operator()(int h, int w);
private:
double sample() {
mem *= r;
if(odd) {
r1 = m_2pi * RNG.genrand_open_close();
r2 = std::sqrt(factr * std::log(RNG.genrand_open_close()));
mem += r2 * std::cos(r1);
}
else {
mem += r2 * std::sin(r1);
}
odd = !odd;
return (mem + mean);
}
double mem, r, factr, mean, var, r1, r2;
bool odd;
Random_Generator RNG;
};
/*!
\brief Gauss_RNG is the same as Normal Source
\ingroup randgen
*/
typedef Normal_RNG Gauss_RNG;
/*!
\brief AR1_Gauss_RNG is the same as AR1_Normal_RNG
\ingroup randgen
*/
typedef AR1_Normal_RNG AR1_Gauss_RNG;
/*!
\brief Weibull distribution
\ingroup randgen
*/
class ITPP_EXPORT Weibull_RNG
{
public:
//! Constructor. Set lambda and beta.
Weibull_RNG(double lambda = 1.0, double beta = 1.0);
//! Set lambda, and beta
void setup(double lambda, double beta);
//! Get lambda and beta
void get_setup(double &lambda, double &beta) { lambda = l; beta = b; }
//! Get one sample.
double operator()() { return sample(); }
//! Get a sample vector.
vec operator()(int n);
//! Get a sample matrix.
mat operator()(int h, int w);
private:
double sample() {
return (std::pow(-std::log(RNG.genrand_open_close()), 1.0 / b) / l);
}
double l, b;
double mean, var;
Random_Generator RNG;
};
/*!
\brief Rayleigh distribution
\ingroup randgen
*/
class ITPP_EXPORT Rayleigh_RNG
{
public:
//! Constructor. Set sigma.
Rayleigh_RNG(double sigma = 1.0);
//! Set sigma
void setup(double sigma) { sig = sigma; }
//! Get sigma
double get_setup() { return sig; }
//! Get one sample.
double operator()() { return sample(); }
//! Get a sample vector.
vec operator()(int n);
//! Get a sample matrix.
mat operator()(int h, int w);
private:
double sample() {
double s1 = nRNG.sample();
double s2 = nRNG.sample();
// s1 and s2 are N(0,1) and independent
return (sig * std::sqrt(s1 * s1 + s2 * s2));
}
double sig;
Normal_RNG nRNG;
};
/*!
\brief Rice distribution
\ingroup randgen
*/
class ITPP_EXPORT Rice_RNG
{
public:
//! Constructor. Set sigma, and v (if v = 0, Rice -> Rayleigh).
Rice_RNG(double sigma = 1.0, double v = 1.0);
//! Set sigma, and v (if v = 0, Rice -> Rayleigh).
void setup(double sigma, double v) { sig = sigma; s = v; }
//! Get parameters
void get_setup(double &sigma, double &v) { sigma = sig; v = s; }
//! Get one sample
double operator()() { return sample(); }
//! Get a sample vector
vec operator()(int n);
//! Get a sample matrix
mat operator()(int h, int w);
private:
double sample() {
double s1 = nRNG.sample() + s;
double s2 = nRNG.sample();
// s1 and s2 are N(0,1) and independent
return (sig * std::sqrt(s1 * s1 + s2 * s2));
}
double sig, s;
Normal_RNG nRNG;
};
//! \addtogroup randgen
//!@{
//! Generates a random bit (equally likely 0s and 1s)
inline bin randb(void) { Bernoulli_RNG src; return src.sample(); }
//! Generates a random bit vector (equally likely 0s and 1s)
inline void randb(int size, bvec &out) { Bernoulli_RNG src; src.sample_vector(size, out); }
//! Generates a random bit vector (equally likely 0s and 1s)
inline bvec randb(int size) { bvec temp; randb(size, temp); return temp; }
//! Generates a random bit matrix (equally likely 0s and 1s)
inline void randb(int rows, int cols, bmat &out) { Bernoulli_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random bit matrix (equally likely 0s and 1s)
inline bmat randb(int rows, int cols) { bmat temp; randb(rows, cols, temp); return temp; }
//! Generates a random uniform (0,1) number
inline double randu(void) { Uniform_RNG src; return src.sample(); }
//! Generates a random uniform (0,1) vector
inline void randu(int size, vec &out) { Uniform_RNG src; src.sample_vector(size, out); }
//! Generates a random uniform (0,1) vector
inline vec randu(int size) { vec temp; randu(size, temp); return temp; }
//! Generates a random uniform (0,1) matrix
inline void randu(int rows, int cols, mat &out) { Uniform_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random uniform (0,1) matrix
inline mat randu(int rows, int cols) { mat temp; randu(rows, cols, temp); return temp; }
//! Generates a random integer in the interval [low,high]
inline int randi(int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(); }
//! Generates a random ivec with elements in the interval [low,high]
inline ivec randi(int size, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(size); }
//! Generates a random imat with elements in the interval [low,high]
inline imat randi(int rows, int cols, int low, int high) { I_Uniform_RNG src; src.setup(low, high); return src(rows, cols); }
//! Generates a random Rayleigh vector
inline vec randray(int size, double sigma = 1.0) { Rayleigh_RNG src; src.setup(sigma); return src(size); }
//! Generates a random Rice vector (See J.G. Poakis, "Digital Communications, 3rd ed." p.47)
inline vec randrice(int size, double sigma = 1.0, double s = 1.0) { Rice_RNG src; src.setup(sigma, s); return src(size); }
//! Generates a random complex Gaussian vector
inline vec randexp(int size, double lambda = 1.0) { Exponential_RNG src; src.setup(lambda); return src(size); }
//! Generates a random Gaussian (0,1) variable
inline double randn(void) { Normal_RNG src; return src.sample(); }
//! Generates a random Gaussian (0,1) vector
inline void randn(int size, vec &out) { Normal_RNG src; src.sample_vector(size, out); }
//! Generates a random Gaussian (0,1) vector
inline vec randn(int size) { vec temp; randn(size, temp); return temp; }
//! Generates a random Gaussian (0,1) matrix
inline void randn(int rows, int cols, mat &out) { Normal_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random Gaussian (0,1) matrix
inline mat randn(int rows, int cols) { mat temp; randn(rows, cols, temp); return temp; }
/*! \brief Generates a random complex Gaussian (0,1) variable
The real and imaginary parts are independent and have variances equal to 0.5
*/
inline std::complex<double> randn_c(void) { Complex_Normal_RNG src; return src.sample(); }
//! Generates a random complex Gaussian (0,1) vector
inline void randn_c(int size, cvec &out) { Complex_Normal_RNG src; src.sample_vector(size, out); }
//! Generates a random complex Gaussian (0,1) vector
inline cvec randn_c(int size) { cvec temp; randn_c(size, temp); return temp; }
//! Generates a random complex Gaussian (0,1) matrix
inline void randn_c(int rows, int cols, cmat &out) { Complex_Normal_RNG src; src.sample_matrix(rows, cols, out); }
//! Generates a random complex Gaussian (0,1) matrix
inline cmat randn_c(int rows, int cols) { cmat temp; randn_c(rows, cols, temp); return temp; }
//!@}
} // namespace itpp
#endif // #ifndef RANDOM_H
|