/usr/include/itpp/signal/transforms.h is in libitpp-dev 4.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | /*!
* \file
* \brief Fourier, Hadamard, Walsh-Hadamard, and 2D Hadamard transforms -
* header file
* \author Tony Ottosson, Thomas Eriksson, Simon Wood, Adam Piatyszek, Andy Panov and Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2013 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef TRANSFORMS_H
#define TRANSFORMS_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/matfunc.h>
#include <itpp/itexports.h>
namespace itpp
{
/*!
\addtogroup fft
\brief One dimensional fast fourier transform
\author Tony Ottosson and Adam Piatyszek
The functions \code X = fft(x) \endcode and \code x = ifft(X) \endcode are
the fourier and inverse fourier transforms of size \a N defined as:
\f[
X(k) = \sum_{j=0}^{N-1} x(j) e^{-2\pi j k \cdot i / N}
\f]
\f[
x(j) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{2\pi j k \cdot i / N}
\f]
\code Y = fft(X, N) \endcode performs zero-padding up to size N and then
performs an N-size fft.
The implementation is built upon one of the following libraries:
- FFTW (version 3.0.0 or higher)
- MKL (version 8.0.0 or higher)
- ACML (version 2.5.3 or higher).
\note FFTW-based implementation is the fastest for powers of two.
Furthermore, the second time you call the routine with the same size,
the calculation is much faster due to many things were calculated and
stored the first time the routine was called.
\note Achieving maximum runtime efficiency with the FFTW library on some
computer architectures requires that data are stored in the memory with
a special alignment (to 16-byte boundaries). The IT++ memory management
functions and container classes do not generally allocate memory aligned
this way, and as a result calling FFTW via the IT++ interface (i.e. the
fft() function) may be slower than using the FFTW library directly.
Therefore, FFTW users concerned about maximum possible performance may
want to consider the possibility of calling the FFTW library and its
memory management/allocation routines directly, bypassing the IT++
storage classes and the fft() interface to FFTW.
*/
//!\addtogroup fft
//!@{
//! Run-time test if library is built with Fast Fourier Transforms enabled
ITPP_EXPORT bool have_fourier_transforms();
//! Fast Fourier Transform
ITPP_EXPORT void fft(const cvec &in, cvec &out);
//! Fast Fourier Transform
ITPP_EXPORT cvec fft(const cvec &in);
/*!
\brief Fast Fourier Transform with zero-padding up to size N
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
*/
ITPP_EXPORT cvec fft(const cvec &in, const int N);
//! Inverse Fast Fourier Transform
ITPP_EXPORT void ifft(const cvec &in, cvec &out);
//! Inverse Fast Fourier Transform
ITPP_EXPORT cvec ifft(const cvec &in);
/*!
\brief Inverse Fast Fourier Transform with zero-padding up to size N
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
*/
ITPP_EXPORT cvec ifft(const cvec &in, const int N);
//! Real Fast Fourier Transform
ITPP_EXPORT void fft_real(const vec& in, cvec &out);
//! Real Fast Fourier Transform
ITPP_EXPORT cvec fft_real(const vec& in);
/*!
\brief Real Fast Fourier Transform with zero-padding up to size N
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
*/
ITPP_EXPORT cvec fft_real(const vec &in, const int N);
/*!
\brief Inverse Real Fast Fourier Transform.
Underlying implementation assumes Hermitian symmetry of the input spectra. Results are
unpredictable and depending on the implementation (MKL/ACML/FFTW) if this requirement is not met.
*/
ITPP_EXPORT void ifft_real(const cvec &in, vec &out);
/*!
\brief Inverse Real Fast Fourier Transform.
Underlying implementation assumes Hermittian symmetry of the input spectra. Results are
unpredictable and depending on the implementation (MKL/ACML/FFTW) if this requirement is not met.
*/
ITPP_EXPORT vec ifft_real(const cvec &in);
/*!
\brief Inverse Real Fast Fourier Transformon with zero-padding up to size N.
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
Underlying implementation assumes Hermitian symmetry of the input subvector/padded sequence. Results are
unpredictable and depending on the implementation (MKL/ACML/FFTW) if this requirement is not met.
*/
ITPP_EXPORT vec ifft_real(const cvec &in, const int N);
//!@}
/*!
\addtogroup dct
\brief One dimensional Dicrete Cosine Transform
\author Tony Ottosson and Adam Piatyszek
The functions \code X = dct(x) \endcode and \code x = idct(X) \endcode
are the dicrete cosine and inverse discrete cosine transforms of size \a
N defined as:
\f[
X(k) = w(k) \sum_{j=0}^{N-1} x(j) \cos \left(\frac{(2j+1)k \pi}{2N} \right)
\f]
\f[
x(j) = \sum_{k=0}^{N-1} w(k) X(k) \cos \left(\frac{(2j+1)k \pi}{2N} \right)
\f]
where \f$w(k) = 1/sqrt{N}\f$ for \f$k=0\f$ and
\f$w(k) = sqrt{2/N}\f$ for \f$k\geq 1\f$.
The implementation is built upon one of the following libraries:
- FFTW (version 3.0.0 or higher)
- MKL (version 10.0.0 or higher)
- ACML (version 4.4.0 or higher).
\note FFTW-based implementation is the fastest for powers of two.
Furthermore, the second time you call the routine with the same size,
the calculation is much faster due to many things were calculated and
stored the first time the routine was called.
\note Achieving maximum runtime efficiency with the FFTW library on some
computer architectures requires that data are stored in the memory with
a special alignment (to 16-byte boundaries). The IT++ memory management
functions and container classes do not generally allocate memory aligned
this way, and as a result calling FFTW via the IT++ interface (i.e. the
dct()/idct() function) may be slower than using the FFTW library
directly. Therefore, FFTW users concerned about maximum possible
performance may want to consider the possibility of calling the FFTW
library and its memory management/allocation routines directly,
bypassing the IT++ storage classes and the dct()/idct() interface to
FFTW.
*/
//!\addtogroup dct
//!@{
//! Run-time test if library is built with cosine transforms enabled
ITPP_EXPORT bool have_cosine_transforms();
//! Discrete Cosine Transform (DCT)
ITPP_EXPORT void dct(const vec &in, vec &out);
//! Discrete Cosine Transform (DCT)
ITPP_EXPORT vec dct(const vec &in);
/*!
\brief Discrete Cosine Transform (DCT) with zero-padding up to size N
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
*/
ITPP_EXPORT vec dct(const vec &in, const int N);
//! Inverse Discrete Cosine Transform (IDCT)
ITPP_EXPORT void idct(const vec &in, vec &out);
//! Inverse Discrete Cosine Transform (IDCT)
ITPP_EXPORT vec idct(const vec &in);
/*!
\brief Inverse Discrete Cosine Transform (IDCT) with zero-padding up to size N
First N points of input vector are used to perform the transform if N < length(in). Padding with 0's is
performed if N > length(in).
*/
ITPP_EXPORT vec idct(const vec &in, const int N);
//!@}
//!\addtogroup fht
//!@{
//! Fast Hadamard Transform
template <class T> Vec<T> dht(const Vec<T> &v);
//! Fast Hadamard Transform
template <class T> void dht(const Vec<T> &vin, Vec<T> &vout);
//! Fast Hadamard Transform - memory efficient. Stores the result in \c v
template <class T> void self_dht(Vec<T> &v);
//! Fast Walsh Hadamard Transform
template <class T> Vec<T> dwht(const Vec<T> &v);
//! Fast Walsh Hadamard Transform
template <class T> void dwht(const Vec<T> &vin, Vec<T> &vout);
//! Fast Walsh Hadamard Transform - memory efficient (result in \c v)
template <class T> void self_dwht(Vec<T> &v);
//! Fast 2D Hadamard Transform
template <class T> Mat<T> dht2(const Mat<T> &m);
//! Fast 2D Walsh Hadamard Transform
template <class T> Mat<T> dwht2(const Mat<T> &m);
//!@}
template <class T>
Vec<T> dht(const Vec<T> &v)
{
Vec<T> ret(v.size());
dht(v, ret);
return ret;
}
//! Bit reverse
template <class T>
void bitrv(Vec<T> &out)
{
int N = out.size();
int j = 0;
int N1 = N - 1;
for(int i = 0; i < N1; ++i) {
if(i < j) {
T temp = out[j];
out[j] = out[i];
out[i] = temp;
}
int K = N / 2;
while(K <= j) {
j -= K;
K /= 2;
}
j += K;
}
}
template <class T>
void dht(const Vec<T> &vin, Vec<T> &vout)
{
int N = vin.size();
int m = levels2bits(N);
it_assert_debug((1 << m) == N, "dht(): The vector size must be a power of two");
vout.set_size(N);
// This step is separated because it copies vin to vout
for(int ib = 0; ib < N; ib += 2) {
vout(ib) = vin(ib) + vin(ib + 1);
vout(ib + 1) = vin(ib) - vin(ib + 1);
}
N /= 2;
int l = 2;
for(int i = 1; i < m; ++i) {
N /= 2;
int ib = 0;
for(int k = 0; k < N; ++k) {
for(int j = 0; j < l; ++j) {
T t = vout(ib + j);
vout(ib + j) += vout(ib + j + l);
vout(ib + j + l) = t - vout(ib + j + l);
}
ib += 2 * l;
}
l *= 2;
}
vout /= static_cast<T>(std::sqrt(static_cast<double>(vin.size())));
}
template <class T>
void self_dht(Vec<T> &v)
{
int N = v.size();
int m = levels2bits(N);
it_assert_debug((1 << m) == N, "self_dht(): The vector size must be a power "
"of two");
int l = 1;
for(int i = 0; i < m; ++i) {
N /= 2;
int ib = 0;
for(int k = 0; k < N; ++k) {
for(int j = 0; j < l; ++j) {
T t = v(ib + j);
v(ib + j) += v(ib + j + l);
v(ib + j + l) = t - v(ib + j + l);
}
ib += 2 * l;
}
l *= 2;
}
v /= static_cast<T>(std::sqrt(static_cast<double>(v.size())));
}
template <class T>
Vec<T> dwht(const Vec<T> &v)
{
Vec<T> ret(v.size());
dwht(v, ret);
return ret;
}
template <class T>
void dwht(const Vec<T> &vin, Vec<T> &vout)
{
dht(vin, vout);
bitrv(vout);
}
template <class T>
void self_dwht(Vec<T> &v)
{
self_dht(v);
bitrv(v);
}
template <class T>
Mat<T> dht2(const Mat<T> &m)
{
Mat<T> ret(m.rows(), m.cols());
Vec<T> v;
for(int i = 0; i < m.rows(); ++i) {
v = m.get_row(i);
self_dht(v);
ret.set_row(i, v);
}
for(int i = 0; i < m.cols(); ++i) {
v = ret.get_col(i);
self_dht(v);
ret.set_col(i, v);
}
return transpose(ret);
}
template <class T>
Mat<T> dwht2(const Mat<T> &m)
{
Mat<T> ret(m.rows(), m.cols());
Vec<T> v;
for(int i = 0; i < m.rows(); ++i) {
v = m.get_row(i);
self_dwht(v);
ret.set_row(i, v);
}
for(int i = 0; i < m.cols(); ++i) {
v = ret.get_col(i);
self_dwht(v);
ret.set_col(i, v);
}
return transpose(ret);
}
//! \cond
// ----------------------------------------------------------------------
// Instantiations
// ----------------------------------------------------------------------
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec dht(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec dht(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void dht(const vec &vin, vec &vout);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void dht(const cvec &vin, cvec &vout);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void self_dht(vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void self_dht(cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT vec dwht(const vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cvec dwht(const cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void dwht(const vec &vin, vec &vout);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void dwht(const cvec &vin, cvec &vout);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void self_dwht(vec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT void self_dwht(cvec &v);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat dht2(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat dht2(const cmat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT mat dwht2(const mat &m);
ITPP_EXPORT_TEMPLATE template ITPP_EXPORT cmat dwht2(const cmat &m);
//! \endcond
} // namespace itpp
#endif // #ifndef TRANSFORMS_H
|