This file is indexed.

/usr/include/linbox/algorithms/coppersmith.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/* linbox/algorithms/coppersmith.h
 * evolved from block-wiedemann.h by George Yuhasz
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */


#ifndef __LINBOX_coppersmith_H
#define __LINBOX_coppersmith_H

#include <vector>
#include <numeric>
#include <algorithm>
#include <iostream>
#include <givaro/givpoly1crt.h>


#include "linbox/integer.h"
#include "linbox/util/commentator.h"
#include "linbox/algorithms/blackbox-block-container.h"
#include "linbox/algorithms/block-coppersmith-domain.h"
#include "linbox/solutions/det.h"

#include "linbox/util/error.h"
#include "linbox/util/debug.h"

namespace LinBox
{

	template <class _Domain>
	class CoppersmithSolver{

	public:
		typedef _Domain 			Domain;
		typedef typename Domain::Field                    Field;
		typedef typename Domain::Element       Element;
		typedef typename Domain::OwnMatrix 	Block;
		typedef typename Domain::Matrix 	Sub;

		inline const Domain & domain() const { return *_MD; }
		inline const Field & field() const { return domain().field(); }
	protected:
		const Domain     *_MD;
		size_t		blocking;

	public:
		CoppersmithSolver(const Domain &MD, size_t blocking_ = 0) :
			 _MD(&MD), blocking(blocking_)
		{}


		template <class Vector, class Blackbox>
		Vector &solveNonSingular (Vector &x, const Blackbox &B, const Vector &y) const
		{
			commentator().start ("Coppersmith solveNonSingular", "solveNonSingular");
#if 1
			std::ostream& report = commentator().report(Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
#endif

			//Set up the projection matrices and their dimensions
			size_t d = B.coldim();
			size_t r,c;
			integer tmp = uint64_t(d);

			//Set the blocking size, Using Pascal Giorgi's convention
			if(blocking==0){
				r=tmp.bitsize()-1;
				c=tmp.bitsize()-1;
			}else
				r=c=blocking;

			//Create the block
			Block U(field(),r,d);
			Block W(field(),d,c-1);
			Block V(field(),d,c);

			//Pick random entries for U and W. W will become the last c-1 columns of V

			U.random();
			W.random();

			//Multiply W by B on the left and place it in the last c-1 columns of V
			Sub V2(V,0,1,d,c-1);
			domain().mul(V2,B,W);

			//Make the first column of V a copy of the right side of the system, y
			for(size_t i=0; i<d; i++)
				V.setEntry(i,0,y[i]);

			//Create the sequence container and its iterator that will compute the projection
			BlackboxBlockContainer<Field, Blackbox > blockseq(&B,field(),U,V);

			//Get the generator of the projection using the Coppersmith algorithm (slightly modified by Yuhasz)
			BlockCoppersmithDomain<Domain, BlackboxBlockContainer<Field, Blackbox> > BCD(domain(), &blockseq,d);
			std::vector<Block> gen;
			std::vector<size_t> deg;
			deg = BCD.right_minpoly(gen);
			report << "Size of blockseq " << blockseq.size() << std::endl;
			report << "Size of gen " << gen.size() << std::endl;
			for(size_t i = 0; i < gen[0].coldim(); i++)
				report << "Column " << i << " has degree " << deg[i] << std::endl;

			//Reconstruct the solution
			//Pick a column of the generator with a nonzero element in the first row of the constant coefficient
			size_t idx = 0;
			if(field().isZero(gen[0].getEntry(0,0))){
				size_t i = 1;
				while(i<c && field().isZero(gen[0].getEntry(0,i)))
					i++;
				if(i==c)
					throw LinboxError(" block minpoly: matrix seems to be singular - abort");
				else
					idx=i;
			}

			//from 1 to the degree of the index column, multiply A^(i-1)V times the idx column of the generator coefficient x^i
			//Accumulate these results in xm
			size_t mu = deg[idx];
			Block BVo(V);
			Block BVe(field(),d,c);
			Block xm(field(),d,1);
			bool odd = true;
			for(size_t i = 1; i < mu+1; i++){
				Sub gencol(gen[i],0,idx,c,1); // BB changed d,1 to c,1
				Block BVgencol(field(),d,1);
				if(odd){
					domain().mul(BVgencol,BVo,gencol);
					domain().addin(xm, BVgencol);
					domain().mul(BVe,B,BVo);
					odd=false;
				}
				else{
					domain().mul(BVgencol,BVe,gencol);
					domain().addin(xm, BVgencol);
					domain().mul(BVo,B,BVe);
					odd=true;
				}

			}

			//For the constant coefficient, loop over the elements in the idx column except the first row
			//Multiply the corresponding column of W (the last c-1 columns of V before application of B) by the generator element
			//Accumulate the results in xm
			for(size_t i = 1; i < c; i++){
				Sub Wcol(W,0,i-1,d,1);
				Block Wcolgen0(field(),d,1);
				domain().mul(Wcolgen0, Wcol, gen[0].getEntry(i,idx));
				domain().addin(xm,Wcolgen0);
			}

			//Multiply xm by -1(move to the correct side of the equation) and divide the the 0,idx entry of the generator constant
			Element gen0inv;
			field().inv(gen0inv,gen[0].getEntry(0,idx));
			field().negin(gen0inv);
			domain().mulin(xm, gen0inv);

#if 0
			//Test to see if the answer works with U
			Block Bxm(field(),d,1), UBxm(field(),r,1), Uycol(field(), r,1);
			Sub ycol(V,0,0,d,1);
			domain().mul(Uycol, U, ycol);
			domain().mul(Bxm, B, xm);
			domain().mul(UBxm, U, Bxm);

			if(domain().areEqual(UBxm, Uycol))
				report << "The solution matches when projected by U" << endl;
			else
				report << "The solution does not match when projected by U" << endl;
#endif


			//Copy xm into x (Change type from 1 column matrix to Vector)
			for(size_t i =0; i<d; i++)
				x[i]=xm.getEntry(i,0);

			commentator().stop ("done", NULL, "solveNonSingular");
			return x;
		}




	}; // end of class CoppersmithSolver

	template <class _Domain>
	class CoppersmithRank{

	public:
		typedef _Domain 			Domain;
		typedef typename Domain::Field                    Field;
		typedef typename Domain::Element       Element;
		typedef typename Domain::Matrix 	Block;
		typedef typename Domain::Submatrix 	Sub;
		typedef typename Field::RandIter	Random;

		inline const Domain & domain() const { return *_MD; }
		inline const Field & field() const { return domain().field(); }
	protected:
		const Domain     *_MD;
		Random		iter;
		size_t		blocking;

		//Compute the determinant of a polynomial matrix at the given set of evaluation points
		//Store the results in the vector dets.
		void EvalPolyMat(std::vector<Element> &dets, std::vector<Element> &values, std::vector<Block> & mat) const {

			size_t deg = mat.size() -1;
			size_t numv = values.size();
			//Compute the determinant of the evaluation at values[i] for each i
			for(size_t i = 0; i<numv; i++){
				//copy the highest matrix coefficient
				Block evalmat(field(), mat[0].rowdim(), mat[0].coldim());
				domain().copy(evalmat,mat[deg]);
				//Evaluate using a horner style evaluation
				typename std::vector<Block>::reverse_iterator addit =  mat.rbegin();
				addit++;
				for(addit; addit != mat.rend(); addit++){
					domain().mulin(evalmat,values[i]);
					domain().addin(evalmat,*addit);
				}//end loop computing horner evaluation
				//Compute the determinant of the evaluation and store it in dets[i]
				dets[i] = det(dets[i],evalmat);
			}//end loop over evaluation points
		}//end evaluation of polynominal matrix determinant

	public:
		CoppersmithRank(const Domain &MD, size_t blocking_ = 0) :
			 _MD(&MD), blocking(blocking_), iter(MD.field())
		{}


		template <class Blackbox>
		size_t rank (const Blackbox &B) const
		{
			commentator().start ("Coppersmith rank", "rank");
#if 1
			std::ostream& report = commentator().report(Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
#endif

			//Set up the projection matrices and their dimensions
			size_t d = B.coldim();
			size_t r,c;
			integer tmp = uint64_t(d);

			//Set the blocking size, Using Pascal Giorgi's convention
			if(blocking==0){
				r=tmp.bitsize()-1;
				c=tmp.bitsize()-1;
			}else
				r=c=blocking;

			//Create the block
			Block U(field(),r,d);
			Block V(field(),d,c);

			//Pick random entries for U and W. W will become the last c-1 columns of V

			U.random();
			V.random();


			BlackboxBlockContainer<Field, Blackbox > blockseq(&B,field(),U,V);

			//Get the generator of the projection using the Coppersmith algorithm (slightly modified by Yuhasz)
			BlockCoppersmithDomain<Domain, BlackboxBlockContainer<Field, Blackbox> > BCD(domain(), &blockseq,d);
			std::vector<Block> gen;
			std::vector<size_t> deg;
			deg = BCD.right_minpoly(gen);
			for(size_t i = 0; i < gen[0].coldim(); i++)
				report << "Column " << i << " has degree " << deg[i] << std::endl;

			//Compute the rank via the determinant of the generator
			//Get the sum of column degrees
			//This is the degree of the determinant via Yuhasz thesis
			//size_t detdeg = std::accumulate(deg.begin(), deg.end(), 0);
			size_t detdeg= 0;
			for(size_t i = 0; i < gen[0].coldim(); i++)
				detdeg+=deg[i];
			//Set up interpolation with one more evaluation point than degree
			size_t numpoints = d+1;
			std::vector<Element> evalpoints(numpoints), evaldets(numpoints);
			for(typename std::vector<Element>::iterator evalit = evalpoints.begin(); evalit != evalpoints.end(); evalit++){
				do{
					//do iter.random(*evalit); while(field().isZero(*evalit));
					iter.random(*evalit);
				}while ((std::find(evalpoints.begin(), evalit, *evalit) != evalit));
			}//end evaluation point construction loop

			//Evaluate the generator determinant at the points
			EvalPolyMat(evaldets, evalpoints, gen);
			for(size_t k = 0; k <numpoints; k++)
				report << evalpoints[k] << "  " << evaldets[k] << std::endl;
			//Construct the polynomial using Givare interpolation
			//Stolen from Pascal Giorgi, linbox/examples/omp-block-rank.C
			typedef Givaro::Poly1CRT< Field >  PolyCRT;
			PolyCRT Interpolator(field(), evalpoints, "x");
			typename PolyCRT::Element Determinant;
			Interpolator.RnsToRing(Determinant,evaldets);
			Givaro::Degree intdetdeg;
			Interpolator.getpolydom().degree(intdetdeg,Determinant);
			Givaro::Degree intdetval;
			Interpolator.getpolydom().val(intdetval,Determinant);
			if(detdeg != (size_t) intdetdeg.value()){
				report << "sum of column degrees " << detdeg << std::endl;
				report << "interpolation degree " << intdetdeg.value() << std::endl;
			}
			report << "sum of column degrees " << detdeg << std::endl;
			report << "interpolation degree " << intdetdeg.value() << std::endl;
			report << "valence (trailing degree) " << intdetval.value() << std::endl;
			for(size_t k = 0; k<gen.size(); k++)
				domain().write(report, gen[k]) << "x^" << k << std::endl;
			Interpolator.write(report << "Interpolated determinant: ", Determinant) << std::endl;
			size_t myrank = size_t(intdetdeg.value() - intdetval.value());
			commentator().stop ("done", NULL, "Coppersmith rank");
			return myrank;
		}




	}; // end of class CoppersmithRank

	//Use the coppersmith block wiedemann to compute the determinant
	template <class _Domain>
	class CoppersmithDeterminant{

	public:
		typedef _Domain 			Domain;
		typedef typename Domain::Field                    Field;
		typedef typename Domain::Element       Element;
		typedef typename Domain::Matrix 	Block;
		typedef typename Domain::Submatrix 	Sub;
		typedef typename Field::RandIter	Random;

		inline const Domain & domain() const { return *_MD; }
		inline const Field & field() const { return domain().field(); }
	protected:
		const Domain     *_MD;
		Random		iter;
		size_t		blocking;

		//Compute the determinant of a polynomial matrix at the given set of evaluation points
		//Store the results in the vector dets.
		void EvalPolyMat(std::vector<Element> &dets, std::vector<Element> &values, std::vector<Block> & mat) const {

			size_t deg = mat.size() -1;
			size_t numv = values.size();
			//Compute the determinant of the evaluation at values[i] for each i
			for(size_t i = 0; i<numv; i++){
				//copy the highest matrix coefficient
				Block evalmat(mat[deg]);
				//Evaluate using a horner style evaluation
				typename std::vector<Block>::reverse_iterator addit =  mat.rbegin();
				addit++;
				for(addit; addit != mat.rend(); addit++){
					domain().mulin(evalmat,values[i]);
					domain().addin(evalmat,*addit);
				}//end loop computing horner evaluation
				//Compute the determinant of the evaluation and store it in dets[i]
				dets[i] = det(dets[i],evalmat);
			}//end loop over evaluation points
		}//end evaluation of polynominal matrix determinant

	public:
		CoppersmithDeterminant(const Domain &MD, size_t blocking_ = 0) :
			 _MD(&MD), blocking(blocking_), iter(MD.field())
		{}


		template <class Blackbox>
		Element det (const Blackbox &B) const
		{
			commentator().start ("Coppersmith determinant", "determinant");
#if 1
			std::ostream& report = commentator().report(Commentator::LEVEL_IMPORTANT, INTERNAL_DESCRIPTION);
#endif

			//Set up the projection matrices and their dimensions
			size_t d = B.coldim();
			size_t r,c;
			integer tmp = uint64_t(d);

			//Use given blocking size, if not given use Pascal Giorgi's convention
			if(blocking==0){
				r=tmp.bitsize()-1;
				c=tmp.bitsize()-1;
			}else
				r=c=blocking;

			//Create the block
			Block U(field(),r,d);
			Block V(field(),d,c);

			//Pick random entries for U and W. W will become the last c-1 columns of V

			U.random();
			V.random();

			//Multiply V by B on the left
			domain().leftMulin(B,V);

			//Create the sequence container and its iterator that will compute the projection
			BlackboxBlockContainer<Field, Blackbox > blockseq(&B,field(),U,V);

			//Get the generator of the projection using the Coppersmith algorithm (slightly modified by Yuhasz)
			BlockCoppersmithDomain<Domain, BlackboxBlockContainer<Field, Blackbox> > BCD(domain(), &blockseq,d);
			std::vector<Block> gen;
			std::vector<size_t> deg;
			deg = BCD.right_minpoly(gen);

			//Compute the determinant via the constant coefficient of the determinant of the generator
			//Get the sum of column degrees
			//This is the degree of the determinant via Yuhasz thesis
			//size_t detdeg = std::accumulate(deg.begin(), deg.end(), 0);
			size_t detdeg= 0;
			for(size_t i = 0; i < gen[0].coldim(); i++)
				detdeg+=deg[i];
			//Set up interpolation with one more evaluation point than degree
			size_t numpoints = 2*d;
			std::vector<Element> evalpoints(numpoints), evaldets(numpoints);
			for(typename std::vector<Element>::iterator evalit = evalpoints.begin(); evalit != evalpoints.end(); evalit++){
				do{
					do iter.random(*evalit); while(field().isZero(*evalit));
				}while ((std::find(evalpoints.begin(), evalit, *evalit) != evalit));
			}//end evaluation point construction loop

			//Evaluate the generator determinant at the points
			EvalPolyMat(evaldets, evalpoints, gen);
			//Construct the polynomial using Givare interpolation
			//Stolen from Pascal Giorgi, linbox/examples/omp-block-rank.C
			typedef Givaro::Poly1CRT<Field>  PolyCRT;
			PolyCRT Interpolator(field(), evalpoints, "x");
			typename PolyCRT::Element Determinant;
			Interpolator.RnsToRing(Determinant,evaldets);
			Givaro::Degree intdetdeg;
			Interpolator.getpolydom().degree(intdetdeg,Determinant);
			Givaro::Degree intdetval(0);
			Interpolator.getpolydom().val(intdetval,Determinant);
			if(d != (size_t)intdetdeg.value()){
				report << "The matrix is singular, determinant is zero" << std::endl;
				return field(0).zero;
			}
			Interpolator.write(report << "Interpolated determinant: ", Determinant) << std::endl;
			Element intdeterminant(field().zero);
			Interpolator.getpolydom().getEntry(intdeterminant,intdetval,Determinant);
			commentator().stop ("done", NULL, "Coppersmith determinant");
			return intdeterminant;
		}

	}; // end of class CoppersmithDeterminant


}// end of namespace LinBox

#endif //__LINBOX_coppersmith_H

// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s