This file is indexed.

/usr/include/linbox/algorithms/cra-full-multip-fixed.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/* Copyright (C) 2010 LinBox
 * Written by <Jean-Guillaume.Dumas@imag.fr>
 *
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/*! @file algorithms/cra-full-multip-fixed.h
 * @ingroup algorithms
 * @brief CRA for multi-residues.
 *
 * An upper bound is given on the size of the data to reconstruct.
 */

#ifndef __LINBOX_cra_full_multip_fixed_H
#define __LINBOX_cra_full_multip_fixed_H

#include "linbox/util/timer.h"
#include <stdlib.h>
#include "linbox/integer.h"
#include "linbox/solutions/methods.h"
#include <vector>
#include <utility>

#include "linbox/algorithms/lazy-product.h"
#include "linbox/algorithms/cra-full-multip.h"


namespace LinBox
{



	/*! @ingroup CRA
	 * @brief Chinese Remaindering Algorithm for multiple residues.
	 * An upper bound is given on the size of the data to reconstruct.
	 */
	template<class Domain_Type>
	struct FullMultipFixedCRA : FullMultipCRA<Domain_Type> {
		typedef Domain_Type			Domain;
		typedef typename Domain::Element 	DomainElement;
		typedef FullMultipFixedCRA<Domain> 	Self_t;

		typedef std::vector<double>::iterator        DoubleVect_Iterator ;
		typedef std::vector< bool >::iterator          BoolVect_Iterator ;
		typedef std::vector< LazyProduct >::iterator   LazyVect_Iterator ;
		typedef BlasVector< Givaro::ZRing<Integer> >                        IntVect ;
		typedef IntVect::iterator                       IntVect_Iterator ;
		typedef std::vector< IntVect >::iterator    IntVectVect_Iterator ;
		typedef IntVect::const_iterator            IntVect_ConstIterator ;

	protected:
		const size_t				size;

	private :
		/*! \internal
		 *  Intialize the Radix ladder.
		 */
		void _initialize ()
		{
			this->RadixSizes_.resize(1);
			this->RadixPrimeProd_.resize(1);
			Givaro::ZRing<Integer> ZZ ;
			this->RadixResidues_.resize(1,BlasVector<Givaro::ZRing<Integer>>(ZZ));
			this->RadixOccupancy_.resize(1);
			this->RadixOccupancy_.front() = false;
		}

	public:
		/*! Constructor.
		 * @param p is a pair such that
		 * - \c p.first is the size of a residue (ie. it would be 1 for \"FullSingle\")
		 * - \c p.second is the theoretical upperbound (natural
		 *   logarithm) on the size of the integers to reconstruct.
		 * .
		 */
		FullMultipFixedCRA(const std::pair<size_t,double>& p ) :
		       	FullMultipCRA<Domain>(p.second), size(p.first)
	       	{
		       	this->_initialize();
		}

		/*! Intialize to the first residue/prime.
		 * @param D domain
		 * @param e iterator on the first residue
		 * @pre any CRA should first call \c initialize before \c progress
		 */
		template<class Iterator>
		void initialize (const Domain& D, Iterator& e)
		{
			this->_initialize();
			this->progress(D, e);
		}

		/*! Add a new residue (ie take into account a new prime).
		 * @param D domain
		 * @param e iterator for the new residue, for instance, a
		 * <code>std::vector<T>::iterator</code>.
		 */
		template<class Iterator>
		void progress (const Domain& D, Iterator& e)
		{
			// Radix shelves
			DoubleVect_Iterator  _dsz_it = this->RadixSizes_.begin();
			LazyVect_Iterator    _mod_it = this->RadixPrimeProd_.begin();
			IntVectVect_Iterator _tab_it = this->RadixResidues_.begin();
			BoolVect_Iterator    _occ_it = this->RadixOccupancy_.begin();

			Givaro::ZRing<Integer> ZZ;
			IntVect ri(ZZ,this->size);
			LazyProduct mi;
			double di;
			if (*_occ_it) {
				// If lower shelf is occupied
				// Combine it with the new residue
				// The for loop will transmit the resulting
				// combination to the upper shelf
				Iterator e_it = e;
				IntVect_Iterator       ri_it = ri.begin();
				IntVect_ConstIterator  t0_it = _tab_it->begin();

				DomainElement invP0;
				this->precomputeInvP0(invP0, D, _mod_it->operator()() );

				for( ; ri_it != ri.end(); ++e_it, ++ri_it, ++ t0_it){
					this->fieldreconstruct(*ri_it, D, *e_it, *t0_it, invP0,
							       (*_mod_it).operator()() );
				}
				Integer tmp;
				D.characteristic(tmp);
				double ltp = Givaro::naturallog(tmp);
				di = *_dsz_it + ltp;
				this->totalsize += ltp;
				mi.mulin(tmp);
				mi.mulin(*_mod_it);
				*_occ_it = false;
			}
			else {
				// Lower shelf is free
				// Put the new residue here and exit
				Integer tmp;
				D.characteristic(tmp);
				double ltp = Givaro::naturallog(tmp);
				_mod_it->initialize(tmp);
				*_dsz_it = ltp;
				this->totalsize += ltp;
				Iterator e_it = e;
				_tab_it->resize(this->size);
				IntVect_Iterator t0_it= _tab_it->begin();
				for( ; t0_it != _tab_it->end(); ++e_it, ++ t0_it){
					D.convert(*t0_it, *e_it);
				}
				*_occ_it = true;
				return;
			}

			// We have a combination to put in the upper shelf
			for(++_dsz_it, ++_mod_it, ++_tab_it, ++_occ_it ;
			    _occ_it != this->RadixOccupancy_.end() ;
			    ++_dsz_it, ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					// This shelf is occupied
					// Combine it with the new combination
					// The loop will try to put it on the upper shelf
					IntVect_Iterator      ri_it = ri.begin();
					IntVect_ConstIterator t_it  = _tab_it->begin();

					Integer invprod;
					this->precomputeInvProd(invprod, mi(), _mod_it->operator()());

					for( ; ri_it != ri.end(); ++ri_it, ++ t_it)
						this->smallbigreconstruct(*ri_it, *t_it, invprod);

					// Product (lazy) computation
					mi.mulin(*_mod_it);

					// Moding out
					for(ri_it = ri.begin() ; ri_it != ri.end(); ++ri_it) {
						*ri_it %= mi();
					}

					di += *_dsz_it;
					*_occ_it = false;
				}
				else {
					// This shelf is free
					// Put the new combination here and exit
					*_dsz_it = di;
					*_mod_it = mi;
					*_tab_it = ri;
					*_occ_it = true;
					return;
				}
			}
			// All the shelfves were occupied
			// We create a new top shelf
			// And put the new combination there
			this->RadixSizes_.push_back( di );
			this->RadixResidues_.push_back( ri );
			this->RadixPrimeProd_.push_back( mi );
			this->RadixOccupancy_.push_back ( true );
		}

		/*! Compute the result.
		 * moves low occupied shelves up.
		 * @param[out] d an iterator for the result.
		 */
		template<class Iterator>
		Iterator& result (Iterator &d)
		{
			LazyVect_Iterator     _mod_it = this->RadixPrimeProd_.begin();
			IntVectVect_Iterator  _tab_it = this->RadixResidues_.begin();
			BoolVect_Iterator     _occ_it = this->RadixOccupancy_.begin();
			LazyProduct Product;
			// We have to find to lowest occupied shelf
			for( ; _occ_it != this->RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					// Found the lowest occupied shelf
					Product = *_mod_it;
					Iterator t0_it = d;
					IntVect_Iterator t_it = _tab_it->begin();
					if (++_occ_it == this->RadixOccupancy_.end()) {
						// It is the only shelf of the radix
						// We normalize the result and output it
						for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
							this->normalize(*t0_it = *t_it, *t_it,
								  _mod_it->operator()());
						this->RadixPrimeProd_.resize(1);
						return d;
					}
					else {
						// There are other shelves
						// The result is initialized with this shelf
						// The for loop will combine the other shelves m with the actual one
						for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
							*t0_it  = *t_it;
						++_mod_it; ++_tab_it;
						break;
					}
				}
			}
			for( ; _occ_it != this->RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					// This shelf is occupied
					// We need to combine it with the actual value of the result
					Iterator t0_it = d;
					IntVect_ConstIterator t_it = _tab_it->begin();

					Integer invprod;
					this->precomputeInvProd(invprod, Product(), _mod_it->operator()() );

					for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
						this->smallbigreconstruct(*t0_it, *t_it, invprod);

					// Overall product computation
					Product.mulin(*_mod_it);

					// Moding out and normalization
					t0_it = d;
					for(size_t i=0;i<this->size; ++i, ++t0_it) {
						*t0_it %= Product();
						Integer tmp(*t0_it);
						this->normalize(*t0_it, tmp, Product());
					}

				}
			}

			// We put it also the final prime product in the first shelf of products
			// JGD : should we also put the result
			//       in the first shelf of residues and resize it to 1
			//       and set to true the first occupancy and resize it to 1
			//       in case result is not the last call (more progress to go) ?
			this->RadixPrimeProd_.resize(1);
			this->RadixPrimeProd_.front() = Product;
			return d;
		}

	};

}

namespace LinBox
{
	/*! NO DOC..
	 * @ingroup CRA
	 * Version of LinBox::FullMultipCRA for matrices.
	 */
	template<class Domain_Type>
	struct FullMultipBlasMatCRA : FullMultipCRA<Domain_Type> {
		typedef Domain_Type			Domain;
		typedef typename Domain::Element 	DomainElement;
		typedef FullMultipBlasMatCRA<Domain> 	Self_t;

		typedef std::vector<double>::iterator        DoubleVect_Iterator ;
		typedef std::vector< bool >::iterator          BoolVect_Iterator ;
		typedef std::vector< LazyProduct >::iterator   LazyVect_Iterator ;
		typedef BlasVector< Givaro::ZRing<Integer> >                        IntVect ;
		typedef IntVect::iterator                       IntVect_Iterator ;
		typedef std::vector< IntVect >::iterator    IntVectVect_Iterator ;
		typedef IntVect::const_iterator            IntVect_ConstIterator ;

	protected:
		const size_t				size;

	private :
		/*! \internal
		 *  Intialize the Radix ladder.
		 */
		void _initialize ()
		{
			this->RadixSizes_.resize(1);
			this->RadixPrimeProd_.resize(1);
			Givaro::ZRing<Integer> ZZ ;
			this->RadixResidues_.resize(1,BlasVector<Givaro::ZRing<Integer>>(ZZ));
			this->RadixOccupancy_.resize(1);
			this->RadixOccupancy_.front() = false;
		}

	public:
		/*! Constructor.
		 * @param p is a pair such that
		 * - \c p.first is the size of a residue, it would be 1 for \"FullSingle\"
		 * - \c p.second is the theoretical upperbound (natural
		 *   logarithm) on the size of the integers to reconstruct.
		 * .
		 */
		FullMultipBlasMatCRA(const std::pair<size_t,double>& p ) :
		       	FullMultipCRA<Domain>(p.second), size(p.first)
		{ }

		/*! Intialize to the first residue/prime.
		 * @param D domain
		 * @param e
		 * @pre any CRA should first call \c initialize before \c progress
		 */
		template<class Matrix>
		void initialize (const Domain& D, Matrix& e)
		{
			this->_initialize();
			this->progress(D, e);
		}

		/*! Add a new residue (ie take into account a new prime).
		 * @param D domain
		 * @param e
		 */
		template<class Matrix>
		void progress (const Domain& D, Matrix& e)
		{
			// Radix shelves
			DoubleVect_Iterator  _dsz_it = this->RadixSizes_.begin();
			LazyVect_Iterator    _mod_it = this->RadixPrimeProd_.begin();
			IntVectVect_Iterator _tab_it = this->RadixResidues_.begin();
			BoolVect_Iterator    _occ_it = this->RadixOccupancy_.begin();

			Givaro::ZRing<Integer> ZZ;
			IntVect ri(ZZ,this->size);
			LazyProduct mi;
			double di;
			if (*_occ_it) {
				// If lower shelf is occupied
				// Combine it with the new residue
				// The for loop will transmit the resulting
				// combination to the upper shelf
				typename Matrix::Iterator e_it = e.Begin();
				IntVect_Iterator            ri_it = ri.begin();
				IntVect_ConstIterator       t0_it = _tab_it->begin();

				DomainElement invP0;
			       	this->precomputeInvP0(invP0, D, _mod_it->operator()() );

				for( ; ri_it != ri.end(); ++e_it, ++ri_it, ++ t0_it){
					this->fieldreconstruct(*ri_it, D, *e_it, *t0_it, invP0,
							       (*_mod_it).operator()() );
				}
				Integer tmp;
				D.characteristic(tmp);
				double ltp = Givaro::naturallog(tmp);
				di = *_dsz_it + ltp;
				this->totalsize += ltp;
				mi.mulin(tmp);
				mi.mulin(*_mod_it);
				*_occ_it = false;
			}
			else {
				// Lower shelf is free
				// Put the new residue here and exit
				Integer tmp;
				D.characteristic(tmp);
				double ltp = Givaro::naturallog(tmp);
				_mod_it->initialize(tmp);
				*_dsz_it = ltp;
				this->totalsize += ltp;
				typename Matrix::Iterator e_it = e.Begin();
				_tab_it->resize(this->size);
				IntVect_Iterator t0_it= _tab_it->begin();
				for( ; t0_it != _tab_it->end(); ++e_it, ++ t0_it){
					D.convert(*t0_it, *e_it);
				}
				*_occ_it = true;
				return;
			}

			// We have a combination to put in the upper shelf
			for(++_dsz_it, ++_mod_it, ++_tab_it, ++_occ_it ;
			    _occ_it != this->RadixOccupancy_.end() ;
			    ++_dsz_it, ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					// This shelf is occupied
					// Combine it with the new combination
					// The loop will try to put it on the upper shelf
					IntVect_Iterator      ri_it = ri.begin();
					IntVect_ConstIterator t_it  = _tab_it->begin();

					Integer invprod;
					this->precomputeInvProd(invprod, mi(), _mod_it->operator()());

					for( ; ri_it != ri.end(); ++ri_it, ++ t_it)
						this->smallbigreconstruct(*ri_it, *t_it, invprod);

					// Product (lazy) computation
					mi.mulin(*_mod_it);

					// Moding out
					for(ri_it = ri.begin() ; ri_it != ri.end(); ++ri_it) {
						*ri_it %= mi();
					}

					di += *_dsz_it;
					*_occ_it = false;
				}
				else {
					// This shelf is free
					// Put the new combination here and exit
					*_dsz_it = di;
					*_mod_it = mi;
					*_tab_it = ri;
					*_occ_it = true;
					return;
				}
			}
			// All the shelfves were occupied
			// We create a new top shelf
			// And put the new combination there
			this->RadixSizes_.push_back( di );
			this->RadixResidues_.push_back( ri );
			this->RadixPrimeProd_.push_back( mi );
			this->RadixOccupancy_.push_back ( true );
		}

		/*! Compute the result.
		 * moves low occupied shelves up.
		 * @param[out] d
		 */
		template<class Matrix>
		Matrix& result (Matrix &d)
		{
			LazyVect_Iterator     _mod_it = this->RadixPrimeProd_.begin();
			IntVectVect_Iterator  _tab_it = this->RadixResidues_.begin();
			BoolVect_Iterator     _occ_it = this->RadixOccupancy_.begin();
			LazyProduct Product;
			size_t _j=0;
			// We have to find to lowest occupied shelf
			for( ; _occ_it != this->RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				++_j;
				if (*_occ_it) {
					// Found the lowest occupied shelf
					Product = *_mod_it;
					typename Matrix::Iterator t0_it = d.Begin();
					IntVect_Iterator t_it = _tab_it->begin();
					if (++_occ_it == this->RadixOccupancy_.end()) {
						// It is the only shelf of the radix
						// We normalize the result and output it
						for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
							this->normalize(*t0_it = *t_it, *t_it,
								  _mod_it->operator()());
						this->RadixPrimeProd_.resize(1);
						return d;
					}
					else {
						// There are other shelves
						// The result is initialized with this shelf
						// The for loop will combine the other shelves m with the actual one
						for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
							*t0_it  = *t_it;
						++_mod_it; ++_tab_it;
						break;
					}
				}
			}
			for( ; _occ_it != this->RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				++_j;
				if (*_occ_it) {
					// This shelf is occupied
					// We need to combine it with the actual value of the result
					typename Matrix::Iterator t0_it = d.Begin();
					IntVect_ConstIterator t_it = _tab_it->begin();

					Integer invprod;
					this->precomputeInvProd(invprod, Product(), _mod_it->operator()() );

					for( ; t_it != _tab_it->end(); ++t0_it, ++t_it)
						this->smallbigreconstruct(*t0_it, *t_it, invprod);

					// Overall product computation
					Product.mulin(*_mod_it);

					// Moding out and normalization
					t0_it = d.Begin();
					for(size_t i=0;i<this->size; ++i, ++t0_it) {
						*t0_it %= Product();
						Integer tmp(*t0_it);
						this->normalize(*t0_it, tmp, Product());
					}

				}
			}

			// We put it also the final prime product in the first shelf of products
			// JGD : should we also put the result
			//       in the first shelf of residues and resize it to 1
			//       and set to true the first occupancy and resize it to 1
			//       in case result is not the last call (more progress to go) ?
			this->RadixPrimeProd_.resize(1);
			this->RadixPrimeProd_.front() = Product;
			return d;
		}

	};

}

#endif //__LINBOX_cra_full_multip_fixed_H


// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: