This file is indexed.

/usr/include/linbox/algorithms/matrix-rank.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* Copyright (C) 2003 LinBox
 *  Author: Zhendong Wan
 *
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/*! @file algorithms/matrix-rank.h
 * @ingroup algorithms
 * @ingroup rank
 * @brief Computes the rank of a matrix by Gaussian Elimination, in place.
 * @details NO DOC
 */
#ifndef __LINBOX_matrix_rank_H
#define __LINBOX_matrix_rank_H

#include "linbox/util/debug.h"
#include "linbox/matrix/sparse-matrix.h"
#include "linbox/solutions/rank.h"

#include "linbox/algorithms/matrix-hom.h"
#include <vector>
#include <algorithm>
#include "linbox/randiter/random-prime.h"

namespace LinBox
{

	/** Compute the rank of an integer matrix in place over a finite field by Gaussian elimination.
	 * @bug there is no generic \c rankIn method.
	*/
	template<class _Ring, class _Field, class _RandomPrime = RandomPrimeIterator>
	class MatrixRank {

	public:

		typedef _Ring Ring;  //!< Ring ?
		typedef _Field Field; //!< Field ?

		Ring r; //!< Ring  ?

		mutable _RandomPrime rp; //!< Holds the random prime for Monte-Carlo rank

		/*! Constructor.
		 * @param _r ring (default is Ring)
		 * @param _rp random prime generator (default is template provided)
		 */
		MatrixRank(const Ring& _r = Ring(), const _RandomPrime& _rp = _RandomPrime() ) :
			r(_r), rp (_rp)
		{}

		~MatrixRank() {}

		/*!compute the integer matrix A by modulo a random prime, Monto-Carlo.
		 * This is the generic method (mapping to a random modular matrix).
		 * @param A Any matrix
		 * @return the rank of A.
		 */
		template<class IMatrix>
		long rank(const IMatrix& A) const
		{

			rp.template setBitsField<Field>();

			Field F ((unsigned long)*rp);

			BlasMatrix<Field> Ap(F, A.rowdim(), A.coldim());

			MatrixHom::map(Ap, A);

			long result;

			result = rankIn(Ap);

			return result;
		}

		/*!Specialisation for BlasMatrix.
		 * Computation done by mapping to a random modular matrix.
		 * @param A Any dense matrix
		 * @return the rank of A.
		 * @bug we suppose we can map IRing to Field...
		 */
		template<class IRing>
		long rank(const BlasMatrix<IRing>& A) const
		{

			rp.template setBitsField<_Field>();

			Field F ((integer)*rp);
			//! bug the following should work :
			// BlasMatrix<Field>  Ap(F,A);
			BlasMatrix<Field> Ap(F, A.rowdim(), A.coldim());

			MatrixHom::map(Ap, A);


			long result;

			result = rankIn(Ap);

			return result;
		}


		/*! Specialisation for SparseMatrix
		 * Computation done by mapping to a random modular matrix.
		 * @param A Any sparse matrix
		 * @return the rank of A.
		 * @bug we suppose we can map IRing to Field...
		 */
		template <class Row>
		long rank(const SparseMatrix<Ring, Row>& A) const
		{
			rp.template setBitsField<Field>();

			Field F (*rp);
			typename SparseMatrix<Ring, Row>::template rebind<Field>::other Ap(A, F);
			long result;
			result = rankIn (Ap);
			return result;
		}

		/*! Specialisation for BlasMatrix (in place).
		 * Generic (slow) elimination code.
		 * @param A a dense matrix
		 * @return its rank
		 * @warning The matrix is on the Field !!!!!!!
		 */
		long rankIn(BlasMatrix<Field>& Ap) const
		{

			typedef typename Field::Element Element;

			Field F = Ap.field();

			typename BlasMatrix<Field>::RowIterator     cur_r,  tmp_r;
			typename BlasMatrix<Field>::ColIterator     cur_c,  tmp_c;
			typename BlasMatrix<Field>::Row::iterator  cur_rp, tmp_rp;
			typename BlasMatrix<Field>::Col::iterator          tmp_cp;

			Element tmp_e;

			std::vector<Element> tmp_v(Ap.coldim());

			int offset_r = 0;

			int offset_c = 0;

			int R = 0;

			for(cur_r = Ap. rowBegin(), cur_c = Ap. colBegin(); (cur_r != Ap. rowEnd())&&(cur_c != Ap.colEnd());) {

				//try to find the pivot.
				tmp_r = cur_r;

				tmp_cp = cur_c -> begin() + offset_c;

				while ((tmp_cp != cur_c -> end()) && F.isZero(*tmp_cp)) {
					++ tmp_cp;
					++ tmp_r;
				}

				// if no pivit found
				if (tmp_cp == cur_c -> end()) {
					++ offset_r;
					++ cur_c;
					continue;
				}

				//if swicth two row if nessary. Each row in dense matrix is stored in contiguous space
				if (tmp_r != cur_r) {

					std::copy (tmp_r -> begin(), tmp_r -> end(), tmp_v.begin());

					std::copy (cur_r -> begin(), cur_r -> end(), tmp_r -> begin());

					std::copy (tmp_v.begin(), tmp_v.end(), cur_r -> begin());
				}

				// continue gauss elimination
				for(tmp_r = cur_r + 1; tmp_r != Ap.rowEnd(); ++ tmp_r) {

					//see if need to update the row
					if (!F.isZero(*(tmp_r -> begin() + offset_r ))) {

						F.div (tmp_e, *(tmp_r -> begin() + offset_r), *(cur_r -> begin() + offset_r));

						F.negin(tmp_e);

						for ( cur_rp = cur_r ->begin() + offset_r,tmp_rp =  tmp_r -> begin() + offset_r;
						      tmp_rp != tmp_r -> end(); ++ tmp_rp, ++ cur_rp )

							F.axpyin ( *tmp_rp, *cur_rp, tmp_e);

					}
				}

				++ cur_r;
				++ cur_c;
				++ offset_r;
				++ offset_c;
				++ R;

			}
			return R;
		}

		/** Specialisation for SparseMatrix, in place.
		 * solution rank is called. (is Elimination guaranteed as the doc says above ?)
		 * @param A a sparse matrix
		 * @return its rank
		 */
		template<class Field, class Row>
		long rankIn(SparseMatrix<Field, Row>& A) const
		{

			unsigned long result;

			LinBox::rank(result, A, A.field());

			return (long)result;
		}

	};



} // end namespace LinBox


#endif //__LINBOX_matrix_rank_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: