This file is indexed.

/usr/include/linbox/algorithms/rational-cra-full-multip.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/* Copyright (C) 2007  LinBox
 * Written by JG Dumas
 *
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

#ifndef __LINBOX_rational_full_multip_cra_H
#define __LINBOX_rational_full_multip_cra_H

#include "givaro/zring.h"
#include "linbox/algorithms/cra-full-multip.h"

namespace LinBox
{

#if 0
	template<class T, template <class T> class Container>
	std::ostream& operator<< (std::ostream& o, const Container<T>& C) {
		for(typename Container<T>::const_iterator refs =  C.begin();
		    refs != C.end() ;
		    ++refs )
			o << (*refs) << " " ;
		return o << std::endl;
	}
#endif

	template<class Domain_Type>
	struct FullMultipRatCRA : public virtual FullMultipCRA<Domain_Type> {
		typedef Domain_Type				Domain;
		typedef FullMultipCRA<Domain> 			Father_t;
		typedef typename Father_t::DomainElement 	DomainElement;
		typedef FullMultipRatCRA<Domain>		Self_t;
		Givaro::ZRing<Integer> _ZZ;
	public:

		using Father_t::RadixSizes_;
		using Father_t::RadixResidues_;
		using Father_t::RadixPrimeProd_;
		using Father_t::RadixOccupancy_;


		FullMultipRatCRA(const double BOUND = 0.0) :
			Father_t(BOUND)
		{}


		template<template<class, class> class Vect, template <class> class Alloc>
		Vect<Integer, Alloc<Integer> >& result (Vect<Integer, Alloc<Integer> > &num, Integer& den)
		{
			num.resize( (Father_t::RadixResidues_.front()).size() );
			std::vector< LazyProduct >::iterator 			_mod_it = Father_t::RadixPrimeProd_.begin();
			std::vector< std::vector< Integer > >::iterator _tab_it = Father_t::RadixResidues_.begin();
			std::vector< bool >::iterator    				_occ_it = Father_t::RadixOccupancy_.begin();
			LazyProduct Product;
			for( ; _occ_it != Father_t::RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					Product = *_mod_it;
					std::vector<Integer>::iterator t0_it = num.begin();
					std::vector<Integer>::iterator t_it = _tab_it->begin();
					if (++_occ_it == Father_t::RadixOccupancy_.end()) {
						den = 1;
						Integer s, nd; _ZZ.sqrt(s, _mod_it->operator()());
						for( ; t0_it != num.end(); ++t0_it, ++t_it) {
							iterativeratrecon(*t0_it = *t_it, nd, den, _mod_it->operator()(), s);
							if (nd > 1) {
								std::vector<Integer>::iterator  t02 = num.begin();
								for( ; t02 != t0_it ; ++t02)
									*t02 *= nd;
								den *= nd;
							}
						}
						return num;
					}
					else {
						for( ; t0_it != num.end(); ++t0_it, ++t_it)
							*t0_it  = *t_it;
						++_mod_it; ++_tab_it;
						break;
					}
				}
			}
			for( ; _occ_it != Father_t::RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					std::vector<Integer>::iterator t0_it = num.begin();
					std::vector<Integer>::const_iterator t_it = _tab_it->begin();
					Integer invprod;
					this->precomputeInvProd(invprod, Product(), _mod_it->operator()() );
					for( ; t0_it != num.end(); ++t0_it, ++t_it)
						this->smallbigreconstruct(*t0_it, *t_it, invprod );
					Product.mulin(*_mod_it);

					// Moding out and normalization
					for(t0_it = num.begin();t0_it != num.end(); ++t0_it) {
						*t0_it %= Product();
						Integer tmp(*t0_it);
						this->normalize(*t0_it, tmp, Product());
					}
				}
			}
			den = 1;
			Integer s, nd; _ZZ.sqrt(s, Product.operator()());
			std::vector<Integer>::iterator t0_it = num.begin();
			for( ; t0_it != num.end(); ++t0_it) {
				iterativeratrecon(*t0_it, nd, den, Product.operator()(), s);
				if (nd > 1) {
					std::vector<Integer>::iterator  t02 = num.begin();
					for( ; t02 != t0_it ; ++t02)
						*t02 *= nd;
					den *= nd;
				}
			}
			return num;
		}

		BlasVector<Givaro::ZRing<Integer> >& result (BlasVector<Givaro::ZRing<Integer>> &num, Integer& den)
		{
			num.resize( (Father_t::RadixResidues_.front()).size() );
			std::vector< LazyProduct >::iterator            _mod_it = Father_t::RadixPrimeProd_.begin();
			std::vector< BlasVector<Givaro::ZRing<Integer>> >::iterator _tab_it = Father_t::RadixResidues_.begin();
			std::vector< bool >::iterator                   _occ_it = Father_t::RadixOccupancy_.begin();
			LazyProduct Product;
			for( ; _occ_it != Father_t::RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					Product = *_mod_it;
					BlasVector<Givaro::ZRing<Integer>>::iterator t0_it = num.begin();
					BlasVector<Givaro::ZRing<Integer>>::iterator t_it = _tab_it->begin();
					if (++_occ_it == Father_t::RadixOccupancy_.end()) {
						den = 1;
						Integer s, nd; _ZZ.sqrt(s, _mod_it->operator()());
						for( ; t0_it != num.end(); ++t0_it, ++t_it) {
							iterativeratrecon(*t0_it = *t_it, nd, den, _mod_it->operator()(), s);
							if (nd > 1) {
								BlasVector<Givaro::ZRing<Integer>>::iterator  t02 = num.begin();
								for( ; t02 != t0_it ; ++t02)
									*t02 *= nd;
								den *= nd;
							}
						}
						return num;
					}
					else {
						for( ; t0_it != num.end(); ++t0_it, ++t_it)
							*t0_it  = *t_it;
						++_mod_it; ++_tab_it;
						break;
					}
				}
			}
			for( ; _occ_it != Father_t::RadixOccupancy_.end() ; ++_mod_it, ++_tab_it, ++_occ_it) {
				if (*_occ_it) {
					BlasVector<Givaro::ZRing<Integer> >::iterator t0_it = num.begin();
					BlasVector<Givaro::ZRing<Integer> >::const_iterator t_it = _tab_it->begin();
					Integer invprod;
					this->precomputeInvProd(invprod, Product(), _mod_it->operator()() );
					for( ; t0_it != num.end(); ++t0_it, ++t_it)
						this->smallbigreconstruct(*t0_it, *t_it, invprod );
					Product.mulin(*_mod_it);

					// Moding out and normalization
					for(t0_it = num.begin();t0_it != num.end(); ++t0_it) {
						*t0_it %= Product();
						Integer tmp(*t0_it);
						this->normalize(*t0_it, tmp, Product());
					}
				}
			}
			den = 1;
			Integer s, nd; _ZZ.sqrt(s, Product.operator()());
			BlasVector<Givaro::ZRing<Integer> >::iterator t0_it = num.begin();
			for( ; t0_it != num.end(); ++t0_it) {
				iterativeratrecon(*t0_it, nd, den, Product.operator()(), s);
				if (nd > 1) {
					BlasVector<Givaro::ZRing<Integer> >::iterator  t02 = num.begin();
					for( ; t02 != t0_it ; ++t02)
						*t02 *= nd;
					den *= nd;
				}
			}
			return num;
		}

	protected:
		Integer& iterativeratrecon(Integer& u1, Integer& new_den, const Integer& old_den, const Integer& m1, const Integer& s)
		{
			Integer a;
			_ZZ.reconstructRational(a, new_den, u1*=old_den, m1, s);
			return u1=a;
		}
	};
}

#endif //__LINBOX_rational_full_multip_cra_H

// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s