This file is indexed.

/usr/include/linbox/algorithms/rational-solver2.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/* linbox/algorithms/rational-solver2.h
 * Copyright (C) 2010 LinBox
 * Author Z. Wan
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

/*! @file algorithms/rational-solver2.h
 * @brief NO DOC
 * @bib
 * Implementation of the algorithm in manuscript, available at
 * http://www.cis.udel.edu/~wan/jsc_wan.ps
 */

#ifndef __LINBOX_rational_solver2__H
#define __LINBOX_rational_solver2__H

#include <memory.h>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include "linbox/integer.h"
#include "linbox/algorithms/rational-reconstruction2.h"

namespace LinBox
{

	/** \brief solver using a hybrid Numeric/Symbolic computation.
	 *
	 *   See the following reference for details on this implementation:
	 *   @bib
	 *   - Zhendong Wan <i>Exactly solve integer linear systems using
	 *   numerical methods.</i> Submitted to Journal of Symbolic
	 *   Computation, 2004.
	 *   .
	 *
	 */
	//template argument Field and RandomPrime are not used.
	//Keep it just for interface consistency.
	template <class Ring, class Field, class RandomPrime>
	class RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits> {

	protected:
		Ring r;

	public:
		typedef typename Ring::Element Integer;

		RationalSolver(const Ring& _r = Ring()) :
			r(_r)
		{}


#ifdef  __LINBOX_HAVE_CLAPACK
		template <class IMatrix, class OutVector, class InVector>
		SolverReturnStatus solve(OutVector& num, Integer& den,
					 const IMatrix& M, const InVector& b) const
		{

			if(M. rowdim() != M. coldim())
				return SS_FAILED;

			linbox_check((b.size() == M.rowdim()) && (num. size() == M.coldim()));
			int n = (int)M. rowdim();
			integer mentry, bnorm; mentry = 1; bnorm = 1;
			typename InVector::const_iterator b_p;
			Integer tmp_I; integer tmp;
			{
				typename IMatrix::ConstIterator raw_p;
				for (raw_p = M. Begin(); raw_p != M. End(); ++ raw_p) {
					r. convert (tmp, *raw_p);
					tmp = abs (tmp);
					if (tmp > mentry) mentry = tmp;
				}
			}

			for (b_p = b. begin(); b_p != b.  end(); ++ b_p) {
				r. init (tmp_I, *b_p);
				r. convert (tmp, tmp_I);
				tmp = abs (tmp);
				if (tmp > bnorm) bnorm = tmp;
			}

			integer threshold; threshold = 1; threshold <<= 50;

			if ((mentry > threshold) || (bnorm > threshold)) return SS_FAILED;
			else {

				double* DM = new double [n * n];
				double* Db = new double [n];
				double* DM_p, *Db_p;
				typename IMatrix::ConstIterator raw_p;
				for (raw_p = M. Begin(), DM_p = DM; raw_p != M. End(); ++ raw_p, ++ DM_p) {
					r. convert (tmp, *raw_p);
					*DM_p = (double) tmp;
				}

				for (b_p = b. begin(), Db_p = Db; b_p != b. begin() + n; ++ b_p, ++ Db_p) {
					r. init (tmp_I, *b_p);
					r. convert (tmp, tmp_I);
					*Db_p = (double) tmp;
				}

				integer* numx = new integer[n];
				integer denx;
				int ret;
				//!@bug don't use cblas_, we should use only fflas-ffpack (if not interfaced in LinBox::)
				ret = cblas_rsol (n, DM, numx, denx, Db);
				delete[] DM; delete[] Db;

				if (ret == 0){
					r. init (den, denx);
					typename OutVector::iterator num_p;
					integer* numx_p = numx;
					for (num_p = num. begin(); num_p != num. end(); ++ num_p, ++ numx_p)
						r. init (*num_p, *numx_p);
				}
				delete[] numx;

				if (ret == 0) return SS_OK;
				else return SS_FAILED;
			}

		}
#else
		template <class IMatrix, class OutVector, class InVector>
		SolverReturnStatus solve(OutVector& num, Integer& den,
					 const IMatrix& M, const InVector& b) const
		{
			//                     std::cerr<< "dgetrf or dgetri missing" << std::endl;
			return SS_FAILED;
		}
#endif

	public:
		//print out a vector
		template <class Elt>
		inline static int printvec (const Elt* v, int n);
		/** Compute the OO-norm of a mtrix */
		inline static double cblas_dOOnorm(const double* M, int m, int n);
		/** compute the maximam of absolute value of an array*/
		inline static double cblas_dmax (const int N, const double* a, const int inc);
		/* apply  y <- Ax */
		inline static int cblas_dapply (int m, int n, const double* A, const double* x, double* y);
		inline static int cblas_mpzapply (int m, int n, const double* A, const integer* x, integer* y);
		//update the numerator; num = num * 2^shift + d;
		inline static int update_num (integer* num, int n, const double* d, int shift);
		//update r = r * shift - M d, where norm (r) < 2^32;
		inline static int update_r_int (double* r, int n, const double* M, const double* d, int shift);
		//update r = r * shift - M d, where 2^32 <= norm (r) < 2^53
		inline static int update_r_ll (double* r, int n, const double* M, const double* d, int shift);
		/** compute  the hadamard bound*/
		inline static int cblas_hbound (integer& b, int m, int n, const double* M);

#if __LINBOX_HAVE_CLAPACK
		// compute the inverse of a general matrix
		inline static int cblas_dgeinv(double* M, int n);
		/* solve Ax = b
		 * A, the integer matrix
		 * b, integer rhs
		 * Return value
		 * 0, ok.
		 * 1, the matrix is not invertible in floating point operations.
		 * 2, the matrix is not well conditioned.
		 * 3, incorrect answer, possible ill-conditioned.
		 */
		inline static int cblas_rsol (int n, const double* M, integer* numx, integer& denx, double* b);
#endif
	};
#if __LINBOX_HAVE_CLAPACK
	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_dgeinv(double* M, int n)
	{
		enum CBLAS_ORDER order = CblasRowMajor;
		int lda = n;
		int *P = new int[n];
		int ierr = clapack_dgetrf (order, n, n, M, lda, P);
		if (ierr != 0) {
			commentator().report (Commentator::LEVEL_IMPORTANT, PARTIAL_RESULT)
			/*std::cerr*/ << "In RationalSolver::cblas_dgeinv Matrix is not full rank" << std::endl;
			delete[] P ;
			return -1;
		}
		clapack_dgetri (order, n, M, lda, P);
		delete[] P ;
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_rsol (int n, const double* M, integer* numx, integer& denx, double* b)
	{
		if (n < 1) return 0;
		double* IM = new double[n * n];
		memcpy ((void*)IM, (const void*)M, sizeof(double)*(size_t)(n*n));
		int ret;
		//compute the inverse by flops
		ret = cblas_dgeinv (IM, n);
		if (ret != 0) {delete[] IM; return 1;}

		double mnorm = cblas_dOOnorm(M, n, n);
		// residual
		double* r = new double [n];
		// A^{-1}r
		double* x = new double [n];
		//ax  = A x
		double* ax = new double [n];
		// a digit, d \approx \alpha x
		double* d = new double [n];

		const double* p2;
		double* pd;
		const double T = 1 << 30;

		integer* num = new integer [n];
		integer* p_mpz;
		integer tmp_mpz, den, denB, B;

		den = 1;
		// compute the hadamard bound
		cblas_hbound (denB, n, n, M);
		B = denB * denB;
		// shouble be a check for tmp_mpz
		tmp_mpz = 2 * mnorm + cblas_dmax (n, b, 1);
		B <<= 1; B *= tmp_mpz; //B *= tmp_mpz;

		//double log2 = log (2.0);
		double log2 = M_LN2;
		// r = b
		memcpy ((void*) r, (const void*) b, sizeof(double)*(size_t)n);

		do  {
			cblas_dapply (n, n, IM, r, x);
			// compute ax
			cblas_dapply (n, n, M, x, ax);
			// compute ax = ax -r, the negative of residual
			cblas_daxpy (n, -1, r, 1, ax, 1);
			// compute possible shift
			double normr1, normr2, normr3, shift2;
			normr1 = cblas_dmax(n, r, 1);
			normr2 = cblas_dmax(n, ax, 1);
			normr3 = cblas_dmax(n, x, 1);
			//try to find a good scalar
			int shift = 30;
			if (normr2 <.0000000001)
				shift = 30;
			else {
				double shift1 = floor(log (normr1 / normr2) / log2) - 2;
				shift = (int)(30 < shift1 ? 30 : shift1);
			}

			normr3 = normr3 > 2 ? normr3 : 2;
			shift2 = floor(53. * log2 / log (normr3));
			shift = (int)(shift < shift2 ? shift : shift2);

			if (shift <= 0) {
#ifdef DEBUGRC
				printf ("%s", "Bad scalar \n");
				printf("%f, %f\n", normr1, normr2);
				printf ("%d, shift = ", shift);
				printf ("OO-norm of matrix: %f\n", cblas_dOOnorm(M, n, n));
				printf ("OO-norm of inverse: %f\n", cblas_dOOnorm(IM, n, n));
				printf ("Error, abort\n");
#endif
				delete[] IM; delete[] r; delete[] x; delete[] ax; delete[] d; delete[] num;
				return 2;
			}

			int scalar = (int) (1UL << shift);
			for (pd = d, p2 = x; pd != d + n; ++ pd, ++ p2)
				//better use round, but sun sparc machine doesnot supprot it
				*pd = floor (*p2 * scalar);

			// update den
			den <<= shift;
			//update num
			update_num (num, n, d, shift);

#ifdef DEBUGRC
			printf ("in iteration\n");
			printf ("residual=\n");
			printvec (r,  n);
			printf ("A^(-1) r\n");
			printvec (x,  n);
			printf ("scalar= ");
			printf ("%d \n", scalar);
			printf ("One digit=\n");
			printvec (d, n);
			printf ("Current bound= \n");
			std::cout << B;
			printf ("den= \n");
			std::cout << den;
			printf ("accumulate numerator=\n");
			printvec (num, n);
#endif
			// update r = r * shift - M d
			double tmp = 2 * mnorm + cblas_dmax (n, r, 1);
			if (tmp < T) update_r_int (r, n, M, d, shift);
			else update_r_ll (r, n, M, d, shift);
			//update_r_ll (r, n, M, d, shift);
		} while (den < B);

		integer q, rem, den_lcm, tmp_den;
		integer* p_x, * p_x1;
		p_mpz = num;
		p_x = numx;
		// construct first answer
		rational_reconstruction (*p_x, denx, *p_mpz, den, denB);
		++ p_mpz;
		++ p_x;

		for (; p_mpz != num + n; ++ p_mpz, ++ p_x)  {
		int sgn;
			sgn = sign (*p_mpz);
			tmp_mpz = denx * (*p_mpz);
			tmp_mpz = abs (tmp_mpz);
			integer::divmod (q, rem, tmp_mpz, den);

			if ( rem < denx)  {
				if (sgn >= 0)
					*p_x = q;
				else
					*p_x = -q;
			}
			else {
				rem = den - rem;
				q += 1;
				if (rem < denx) {
					if (sgn >= 0)
						*p_x = q;
					else
						*p_x = -q;
				}
				else {
					rational_reconstruction (*p_x, tmp_den, *p_mpz, den, denB);
					lcm (den_lcm, tmp_den, denx);
					integer::divexact (tmp_mpz, den_lcm, tmp_den);
					integer::mul (*p_x, *p_x, tmp_mpz);
					integer::divexact (tmp_mpz, den_lcm, denx);
					denx = den_lcm;
					for (p_x1 = numx; p_x1 != p_x; ++ p_x1)
						integer::mul (*p_x1, *p_x1, tmp_mpz);
				}
			}
		}
#ifdef DEBUGRC
		std::cout << "rational answer\nCommon den = ";
		std::cout << denx;
		std::cout << "\nNumerator= \n";
		printvec (numx, n);
#endif

		//normalize the answer
		if (denx != 0) {
			integer g; g = denx;
			for (p_x = numx; p_x != numx + n; ++ p_x)
				g = gcd (g, *p_x);
			for (p_x = numx; p_x != numx + n; ++ p_x)
				integer::divexact (*p_x, *p_x, g);
			integer::divexact (denx, denx, g);
		}

		//check if the answer is correct, not necessary
		cblas_mpzapply (n, n, M, (const integer*)numx, num);
		integer* sb = new integer [n];
		double* p;
		for (p_mpz = sb, p = b; p_mpz != sb + n; ++ p_mpz, ++ p) {
			*p_mpz = *p;
			integer::mulin(*p_mpz, denx);
		}
		ret = 0;
		for (p_mpz = sb, p_x = num; p_mpz != sb + n; ++ p_mpz, ++ p_x)
			if (*p_mpz != *p_x) {
				ret = 3;
				break;
			}
#ifdef DEBUGRC
		if (ret == 3) {

			std::cout << "Input matrix:\n";
			for (int i = 0; i < n; ++ i) {
				const double* p = M + (i * n);
				printvec (p, n);
			}
			std::cout << "Input rhs:\n";
			printvec (b, n);
			std::cout << "Common den: " << denx << '\n';
			std::cout << "Numerator: ";
			printvec (numx, n);
			std::cout << "A num: ";
			printvec (num, n);
			std::cout << "denx rhs: ";
			printvec (sb, n);
		}
#endif

		// garbage collector
		delete[] IM; delete[] r; delete[] x; delete[] ax; delete[] d; delete[] num; delete[] sb;

		return ret;
	}

#endif


	template <class Ring, class Field, class RandomPrime>
	/* apply  y <- Ax */
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_dapply (int m, int n, const double* A, const double* x, double* y)
	{
		cblas_dgemv (CblasRowMajor, CblasNoTrans, m, n, 1, A, n, x, 1, 0, y, 1);
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_mpzapply (int m, int n, const double* A, const integer* x, integer* y)
	{
		const double* p_A;
		const integer* p_x;
		integer* p_y;
		integer tmp;
		for (p_A = A, p_y = y; p_y != y + m; ++ p_y) {
			*p_y = 0;
			for (p_x = x; p_x != x + n; ++ p_x, ++ p_A) {
				//mpz_set_d (tmp, *p_A);
				//mpz_addmul_si (*p_y, *p_x, (int)(*p_A));
				tmp = *p_x  * (int64_t)(*p_A);
				integer::addin (*p_y, tmp);
			}
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	template <class Elt>
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::printvec (const Elt* v, int n)
	{
		const Elt* p;
		std::cout << '[';
		for (p = v; p != v + n; ++ p)
			std::cout << *p << ' ';
		std::cout << ']';
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update num, *num <- *num * 2^shift + d
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::update_num (integer* num, int n, const double* d, int shift)
	{
		integer* p_mpz;
		integer tmp_mpz;
		const double* pd;
		for (p_mpz = num, pd = d; p_mpz != num + n; ++ p_mpz, ++ pd) {
			(*p_mpz) = (*p_mpz) << shift;
			tmp_mpz = *pd;
			integer::add (*p_mpz, *p_mpz, tmp_mpz);
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update r = r * shift - M d
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::update_r_int (double* r, int n, const double* M, const double* d, int shift)
	{
		double* p1;
		const double* p2;
		const double* pd;
		for (p1 = r, p2 = M; p1 != r + n; ++ p1) {
		int tmp;
			tmp = (int)(long long int) *p1;
			tmp <<= shift;
			for (pd = d; pd != d + n; ++ pd, ++ p2) {
				tmp -= (int)(long long int)*pd * (int)(long long int)*p2;
			}
			*p1 = (double)tmp;
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	//update r = r * shift - M d
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::update_r_ll (double* r, int n, const double* M, const double* d, int shift)
	{
		double* p1;
		const double* p2;
		const double* pd;
		for (p1 = r, p2 = M; p1 != r + n; ++ p1) {
		long long int tmp;
			tmp = (long long int) *p1;
			tmp <<= shift;
			for (pd = d; pd != d + n; ++ pd, ++ p2) {
				tmp -= (long long int)*pd * (long long int) *p2;
			}
			*p1 = (double) tmp;
		}
		return 0;
	}

	template <class Ring, class Field, class RandomPrime>
	inline double RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_dOOnorm(const double* M, int m, int n)
	{
		double norm = 0;
		const double* p;
		for (p = M; p != M + (m * n); ) {
		double old = 0;
			old = norm;
			norm = cblas_dasum (n, p ,1);
			if (norm < old) norm = old;
			p += n;
		}
		return norm;
	}

	template <class Ring, class Field, class RandomPrime>
	inline double RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_dmax (const int N, const double* a, const int inc)
	{
		return fabs(a[cblas_idamax (N, a, inc)]);
	}

	template <class Ring, class Field, class RandomPrime>
	inline int RationalSolver<Ring, Field, RandomPrime, NumSymNormTraits>::cblas_hbound (integer& b, int m, int n, const double* M)
	{
		const  double* p;
		integer tmp;
		b = 1;
		for (p = M; p != M + (m * n); ) {
			double norm = 0;
			norm = cblas_dnrm2 (n, p ,1);
			tmp =  norm;
			integer::mulin (b, tmp);
			p += n;
		}

		return 0;
	}
}//LinBox

#endif //__LINBOX_rational_solver2__H



// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s