This file is indexed.

/usr/include/linbox/blackbox/scalar-matrix.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/* linbox/blackbox/scalar.h
 * Copyright (C) 2002 by -bds
 * evolved from diagonal.h written by William J Turner and Bradford Hovinen
 *
 * -------------------------------
 * Modified by Dmitriy Morozov <linbox@foxcub.org>. May 28, 2002.
 *
 * Added parametrization of VectorCategory tags by VectorTraits. See
 * vector-traits.h for more details.
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========

 * -------------------------------
 */

#ifndef __LINBOX_scalar_H
#define __LINBOX_scalar_H

#include <algorithm>
#include <iostream>
#include "linbox/field/hom.h"
#include "linbox/vector/vector-traits.h"
#include "linbox/linbox-config.h"
#include "linbox/blackbox/blackbox-interface.h"
#include "linbox/solutions/solution-tags.h"
#include "linbox/util/matrix-stream.h"
#include "linbox/util/write-mm.h"

namespace LinBox
{

	/** \brief Blackbox for <tt>aI</tt>.  Use particularly for representing <tt>0</tt> and <tt>I</tt>.

	 * This is a class of blackbox square scalar matrices.
	 * Each scalar matrix occupies O(scalar-size) memory.
	 * The matrix itself is not stored in memory, just the scalar and the dimensions.
	 * \ingroup blackbox
	 */
	template <class Field_>
	class ScalarMatrix : public  BlackboxInterface {
	public:

		typedef Field_ Field;
		typedef typename Field::Element        Element;
		typedef ScalarMatrix<Field> Self_t;

		/*  In each specialization, I must define suitable constructor(s) and
		 *  BlackboxArchetype<Vector> * clone() const;
		 *  Vector& apply(Vector& y, Vector& x) const;
		 *  Vector& applyTranspose(Vector& y, Vector& x) const;
		 *  size_t rowdim(void) const;
		 *  size_t coldim(void) const;
		 *  Field& field() const;
		 *  ...rebind...
		 */

		/// Constructs an initially 0 by 0 matrix.
		//! @bug this should not be allowed (unknown field)
		ScalarMatrix ()	:
			field_(NULL),
			n_(0)
		{}

		ScalarMatrix( MatrixStream<Field> & ms) :
			field_(&ms.field())
			,n_(0)
		{
			size_t c, i, j;
			if( !ms.getDimensions(n_, c) || c != n_ )
				throw ms.reportError(__FUNCTION__,__LINE__);
			ms.nextTriple(i, j, v_);
			if (i != j) throw ms.reportError(__FUNCTION__,__LINE__);
			// finalize();
		}

		void changeField(const Field &F)
		{
			field_ = &F ;
		}

		/** Constructor of readable scalar matrix.
		 * @param F	field in which to do arithmetic.
		 */
		ScalarMatrix (const Field &F) :
			field_(&F),
			n_(0)
		{}

#if 0
		/** Scalar matrix Constructor from an element.
		 * @param F	field in which to do arithmetic.
		 * @param n	size of the matrix.
		 * @param s	scalar, a field element, to be used as the diagonal of the matrix.
		 * @bug this is a wrong constructor, should be the following...
		 */
		ScalarMatrix (const Field &F, const size_t n, const Element &s) :
			field_(&F), n_(n), v_(s)
		{}
#endif

		ScalarMatrix (const Field &F, const size_t n, const size_t m, const Element &s) :
			field_(&F), n_(n), v_(s)
		{
			linbox_check(n ==m);
		}

		ScalarMatrix (const Field &F, const size_t n, const size_t m) :
			field_(&F), n_(n), v_(0)
		{
			linbox_check(m==n);
		}

		/** Constructor from a random element.
		 * @param F    field in which to do arithmetic.
		 * @param n    size of the matrix.
		 * @param iter Random iterator from which to get the diagonal scalar element.
		 */
		ScalarMatrix (const Field &F, const size_t n, const typename Field::RandIter& iter) :
			field_(&F), n_(n)
		{ iter.random(v_); }

		ScalarMatrix(const ScalarMatrix<Field> &Mat) :
			field_(Mat.field_)
			, n_(Mat.n_), v_(Mat.v_)
		{
			//n_ = Mat.n_;
			//v_ = Mat.v_;
		}

		void setScalar(Element & x)
		{
			field().assign(v_, x) ;
		}


		/** Application of BlackBox matrix.
		 * y= A*x.
		 * Requires time linear in n, the size of the matrix.
		 */
		template<class OutVector, class InVector>
		OutVector& apply(OutVector &y, InVector &x) const
		{
			//typename VectorTraits<InVector>::VectorCategory t;
			//return _app (y, x, t);
			return _app (y, x, VectorCategories::DenseVectorTag());
		}

		/** Application of BlackBox matrix transpose.
		 * y= transpose(A)*x.
		 * Requires time linear in n, the size of the matrix.
		 */
		template<class OutVector, class InVector>
		OutVector& applyTranspose(OutVector &y, InVector &x) const
		{ return apply(y, x); }  // symmetric matrix.


		template<typename _Tp1>
		struct rebind {
			typedef ScalarMatrix<_Tp1> other;

			void operator() (other & Ap, const Self_t& A)
			{
				Hom<typename Self_t::Field, _Tp1> hom(A.field(), Ap.field());
				typename _Tp1::Element e;
				Ap.field().assign(e,Ap.field().zero);
				hom.image (e, A.v_);
				Ap.setScalar(e);
			}
		};

		template<typename _Tp1>
		ScalarMatrix (const ScalarMatrix<_Tp1>& S, const Field &F) :
			field_(&F), n_(S.rowdim())
		{
			typename ScalarMatrix<_Tp1>::template rebind<Field>() (*this, S);
		}


		size_t rowdim(void) const { return n_; }

		size_t coldim(void) const { return n_; }

		const Field& field() const {return *field_;}

		// for specialized solutions

		Element& trace(Element& t) const
		{	Element n; field().init(n, n_);
			return field().mul(t, v_, n);
		}

		Element& getEntry(Element& x, const size_t i, const size_t j) const
		{
			// return (i==j ? field().assign(x,v_) : field().assign(x,field().zero));
			return (i==j ? field().assign(x,v_) : field().assign(x,field().zero));
		}

		Element& det(Element& d) const
		{
			return pow(field(), d, v_, n_);
		}

		long int& rank(long int& r) const
		{
			return r = (field().isZero(v_) ? 0 : n_);
		}

		Element& getScalar(Element& x) const { return this->field().assign(x,this->v_); }
		Element& setScalar(const Element& x) { return this->field().assign(this->v_,x); }
		std::ostream& write(std::ostream& os) const {
			writeMMCoordHeader(os, *this, 1, "ScalarMatrix");
			field().write(os << "1 1 ", v_) << std::endl;
			return os;
		}

		std::istream& read(std::istream& is) {
			MatrixStream<Field> ms(field(), is);
			size_t c, i, j;
			if( !ms.getDimensions(n_, c) || c != n_ )
				throw ms.reportError(__FUNCTION__,__LINE__);
			ms.nextTriple(i, j, v_);
			if (i != j) throw ms.reportError(__FUNCTION__,__LINE__);
			return is;
		}

	protected:

		const Field *field_;   // Field for arithmetic

		size_t n_;  // Number of rows and columns of square matrix.

		Element v_; // the scalar used in applying matrix.

		// dense vector _app for apply
		template<class OutVector, class InVector>
		OutVector& _app (OutVector &y, const InVector &x, VectorCategories::DenseVectorTag) const;
		// The third argument is just a device to let overloading determine the method.

		// sparse sequence vector _app for apply


		template <class OutVector, class InVector>
		OutVector& _app (OutVector &y, const InVector &x, VectorCategories::SparseSequenceVectorTag) const;

		// sparse associative vector _app for apply
		template<class OutVector, class InVector>
		OutVector& _app (OutVector &y, const InVector &x, VectorCategories::SparseAssociativeVectorTag) const;

		// p <- a^e.  Really should be a field op
		Element& pow(Field& F, Element& p, const Element& a, const size_t e) {
			Element x; F.init(x);
			if (e == 0) return F.assign(p, F.one);
			if (e%2 == 0) return pow(F, p, F.mul(x, a, a), e/2);
			else /* (e%2 == 1)*/ return F.mul(p, a, pow(F, p, a, e-1));
		}
	}; // template <Field> class ScalarMatrix

	// dense vector _app
	template <class Field>
	template <class OutVector, class InVector>
	inline OutVector &ScalarMatrix<Field>::
	_app(OutVector& y, const InVector& x, VectorCategories::DenseVectorTag t) const
	{
		linbox_check (x.size() >= n_);
		linbox_check (y.size() >= n_);
		typename OutVector::iterator y_iter = y.begin ();

		if (field().isZero(v_)) // just write zeroes
			for ( ; y_iter != y.end ();  ++y_iter) *y_iter = v_;
		else if (field().isOne(v_) ) // just copy
			std::copy(x.begin(), x.end(), y.begin());
		else // use actual muls
		{   typename InVector::const_iterator x_iter = x.begin ();
			for (  ; y_iter != y.end () ; ++y_iter, ++x_iter )
				field().mul (*y_iter, v_, *x_iter);
		}
		return y;

	} // dense vector _app


	// sparse sequence vector _app
	template <class Field>
	template <class OutVector, class InVector>
	inline OutVector &ScalarMatrix<Field>::
	_app(OutVector& y, const InVector& x, VectorCategories::SparseSequenceVectorTag t) const
	{
		//linbox_check ((!x.empty ()) && (n_ < x.back ().first));
		// neither is required of x ?

		y.clear (); // we'll overwrite using push_backs.

		// field element to be used in calculations
		Element entry;
		field().assign(entry, field().zero);

		// For each element, multiply input element with corresponding element
		// of stored scalar and insert non-zero elements into output vector
		for ( typename InVector::const_iterator x_iter = x.begin (); x_iter != x.end (); ++x_iter)
		{	field().mul (entry, v_, x_iter->second);
			if (!field().isZero (entry)) y.push_back (make_pair (x_iter->first, entry));
		}

		return y;
	} // sparse sequence vector _app

	// sparse associative vector _app
	template <class Field>
	template <class OutVector, class InVector>
	inline OutVector& ScalarMatrix<Field> ::
	_app(OutVector& y, const InVector& x, VectorCategories::SparseAssociativeVectorTag t) const
	{
		y.clear (); // we'll overwrite using inserts

		// create field elements and size_t to be used in calculations
		Element entry;
		field().assign(entry, field().zero);

		// Iterator over indices of input vector.
		// For each element, multiply input element with
		// stored scalar and insert non-zero elements into output vector
		for ( typename InVector::const_iterator x_iter = x.begin (); x_iter != x.end (); ++x_iter)
		{	field().mul (entry, v_, x_iter->second);
			if (!field().isZero (entry)) y.insert (y.end (), make_pair (x_iter->first, entry));
		}

		return y;
	} // sparse associative vector _app

	// let solutions know we have getEntry() and trace().
	template <class Field>
	struct GetEntryCategory<ScalarMatrix<Field> >
	{ typedef SolutionTags::Local Tag; };

	template <class Field>
	struct TraceCategory<ScalarMatrix<Field> >
	{ typedef SolutionTags::Local Tag; };

	template <class Field>
	struct DetCategory<ScalarMatrix<Field> >
	{ typedef SolutionTags::Local Tag; };

	template <class Field>
	struct RankCategory<ScalarMatrix<Field> >
	{ typedef SolutionTags::Local Tag; };

} // namespace LinBox

#endif // __LINBOX_scalar_H


// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s