/usr/include/MAdLib/ANNperf.h is in libmadlib-dev 1.3.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | //----------------------------------------------------------------------
// File: ANNperf.h
// Programmer: Sunil Arya and David Mount
// Last modified: 03/04/98 (Release 0.1)
// Description: Include file for ANN performance stats
//
// Some of the code for statistics gathering has been adapted
// from the SmplStat.h package in the g++ library.
//----------------------------------------------------------------------
// Copyright (c) 1997-1998 University of Maryland and Sunil Arya and David
// Mount. All Rights Reserved.
//
// This software and related documentation is part of the
// Approximate Nearest Neighbor Library (ANN).
//
// Permission to use, copy, and distribute this software and its
// documentation is hereby granted free of charge, provided that
// (1) it is not a component of a commercial product, and
// (2) this notice appears in all copies of the software and
// related documentation.
//
// The University of Maryland (U.M.) and the authors make no representations
// about the suitability or fitness of this software for any purpose. It is
// provided "as is" without express or implied warranty.
//----------------------------------------------------------------------
// History:
// Revision 0.1 03/04/98
// Initial release
// Revision 1.0 04/01/05
// Added ANN_ prefix to avoid name conflicts.
//----------------------------------------------------------------------
#ifndef ANNperf_H
#define ANNperf_H
//----------------------------------------------------------------------
// basic includes
//----------------------------------------------------------------------
#include <ANN/ANN.h> // basic ANN includes
//----------------------------------------------------------------------
// kd-tree stats object
// This object is used for collecting information about a kd-tree
// or bd-tree.
//----------------------------------------------------------------------
class ANNkdStats { // stats on kd-tree
public:
int dim; // dimension of space
int n_pts; // no. of points
int bkt_size; // bucket size
int n_lf; // no. of leaves (including trivial)
int n_tl; // no. of trivial leaves (no points)
int n_spl; // no. of splitting nodes
int n_shr; // no. of shrinking nodes (for bd-trees)
int depth; // depth of tree
float sum_ar; // sum of leaf aspect ratios
float avg_ar; // average leaf aspect ratio
//
// reset stats
void reset(int d=0, int n=0, int bs=0)
{
dim = d; n_pts = n; bkt_size = bs;
n_lf = n_tl = n_spl = n_shr = depth = 0;
sum_ar = avg_ar = 0.0;
}
ANNkdStats() // basic constructor
{ reset(); }
void merge(const ANNkdStats &st); // merge stats from child
};
//----------------------------------------------------------------------
// ANNsampStat
// A sample stat collects numeric (double) samples and returns some
// simple statistics. Its main functions are:
//
// reset() Reset to no samples.
// += x Include sample x.
// samples() Return number of samples.
// mean() Return mean of samples.
// stdDev() Return standard deviation
// min() Return minimum of samples.
// max() Return maximum of samples.
//----------------------------------------------------------------------
class DLL_API ANNsampStat {
int n; // number of samples
double sum; // sum
double sum2; // sum of squares
double minVal, maxVal; // min and max
public :
void reset() // reset everything
{
n = 0;
sum = sum2 = 0;
minVal = ANN_DBL_MAX;
maxVal = -ANN_DBL_MAX;
}
ANNsampStat() { reset(); } // constructor
void operator+=(double x) // add sample
{
n++; sum += x; sum2 += x*x;
if (x < minVal) minVal = x;
if (x > maxVal) maxVal = x;
}
int samples() { return n; } // number of samples
double mean() { return sum/n; } // mean
// standard deviation
double stdDev() { return sqrt((sum2 - (sum*sum)/n)/(n-1));}
double min() { return minVal; } // minimum
double max() { return maxVal; } // maximum
};
//----------------------------------------------------------------------
// Operation count updates
//----------------------------------------------------------------------
#ifdef ANN_PERF
#define ANN_FLOP(n) {ann_Nfloat_ops += (n);}
#define ANN_LEAF(n) {ann_Nvisit_lfs += (n);}
#define ANN_SPL(n) {ann_Nvisit_spl += (n);}
#define ANN_SHR(n) {ann_Nvisit_shr += (n);}
#define ANN_PTS(n) {ann_Nvisit_pts += (n);}
#define ANN_COORD(n) {ann_Ncoord_hts += (n);}
#else
#define ANN_FLOP(n)
#define ANN_LEAF(n)
#define ANN_SPL(n)
#define ANN_SHR(n)
#define ANN_PTS(n)
#define ANN_COORD(n)
#endif
//----------------------------------------------------------------------
// Performance statistics
// The following data and routines are used for computing performance
// statistics for nearest neighbor searching. Because these routines
// can slow the code down, they can be activated and deactiviated by
// defining the ANN_PERF variable, by compiling with the option:
// -DANN_PERF
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// Global counters for performance measurement
//
// visit_lfs The number of leaf nodes visited in the
// tree.
//
// visit_spl The number of splitting nodes visited in the
// tree.
//
// visit_shr The number of shrinking nodes visited in the
// tree.
//
// visit_pts The number of points visited in all the
// leaf nodes visited. Equivalently, this
// is the number of points for which distance
// calculations are performed.
//
// coord_hts The number of times a coordinate of a
// data point is accessed. This is generally
// less than visit_pts*d if partial distance
// calculation is used. This count is low
// in the sense that if a coordinate is hit
// many times in the same routine we may
// count it only once.
//
// float_ops The number of floating point operations.
// This includes all operations in the heap
// as well as distance calculations to boxes.
//
// average_err The average error of each query (the
// error of the reported point to the true
// nearest neighbor). For k nearest neighbors
// the error is computed k times.
//
// rank_err The rank error of each query (the difference
// in the rank of the reported point and its
// true rank).
//
// data_pts The number of data points. This is not
// a counter, but used in stats computation.
//----------------------------------------------------------------------
extern int ann_Ndata_pts; // number of data points
extern int ann_Nvisit_lfs; // number of leaf nodes visited
extern int ann_Nvisit_spl; // number of splitting nodes visited
extern int ann_Nvisit_shr; // number of shrinking nodes visited
extern int ann_Nvisit_pts; // visited points for one query
extern int ann_Ncoord_hts; // coordinate hits for one query
extern int ann_Nfloat_ops; // floating ops for one query
extern ANNsampStat ann_visit_lfs; // stats on leaf nodes visits
extern ANNsampStat ann_visit_spl; // stats on splitting nodes visits
extern ANNsampStat ann_visit_shr; // stats on shrinking nodes visits
extern ANNsampStat ann_visit_nds; // stats on total nodes visits
extern ANNsampStat ann_visit_pts; // stats on points visited
extern ANNsampStat ann_coord_hts; // stats on coordinate hits
extern ANNsampStat ann_float_ops; // stats on floating ops
//----------------------------------------------------------------------
// The following need to be part of the public interface, because
// they are accessed outside the DLL in ann_test.cpp.
//----------------------------------------------------------------------
DLL_API extern ANNsampStat ann_average_err; // average error
DLL_API extern ANNsampStat ann_rank_err; // rank error
//----------------------------------------------------------------------
// Declaration of externally accessible routines for statistics
//----------------------------------------------------------------------
DLL_API void annResetStats(int data_size); // reset stats for a set of queries
DLL_API void annResetCounts(); // reset counts for one queries
DLL_API void annUpdateStats(); // update stats with current counts
DLL_API void annPrintStats(ANNbool validate); // print statistics for a run
#endif
|