/usr/include/madness/mra/mra.h is in libmadness-dev 0.10.1~gite4aa500e-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
*/
#ifndef MADNESS_MRA_MRA_H__INCLUDED
#define MADNESS_MRA_MRA_H__INCLUDED
/*!
\file mra/mra.h
\brief Main include file for MADNESS and defines \c Function interface
\addtogroup mra
*/
#include <madness/world/MADworld.h>
#include <madness/misc/misc.h>
#include <madness/tensor/tensor.h>
#define FUNCTION_INSTANTIATE_1
#define FUNCTION_INSTANTIATE_2
#define FUNCTION_INSTANTIATE_3
#if !defined(HAVE_IBMBGP) || !defined(HAVE_IBMBGQ)
#define FUNCTION_INSTANTIATE_4
#define FUNCTION_INSTANTIATE_5
#define FUNCTION_INSTANTIATE_6
#endif
static const bool VERIFY_TREE = false; //true
namespace madness {
void startup(World& world, int argc, char** argv, bool doprint=false);
}
#include <madness/mra/key.h>
#include <madness/mra/twoscale.h>
#include <madness/mra/legendre.h>
#include <madness/mra/indexit.h>
#include <madness/world/parallel_archive.h>
#include <madness/world/worlddc.h>
#include <madness/mra/funcdefaults.h>
#include <madness/mra/function_factory.h>
#include <madness/mra/lbdeux.h>
#include <madness/mra/funcimpl.h>
// some forward declarations
namespace madness {
template<typename T, std::size_t NDIM>
class FunctionImpl;
template<typename T, std::size_t NDIM>
class Function;
template<typename T, std::size_t NDIM>
class FunctionNode;
template<typename T, std::size_t NDIM>
class FunctionFactory;
template<typename T, std::size_t NDIM>
class FunctionFunctorInterface;
template<typename T, std::size_t NDIM>
struct leaf_op;
template<typename T, std::size_t NDIM>
struct mul_leaf_op;
template<typename T, std::size_t NDIM>
struct hartree_leaf_op;
template<typename T, std::size_t NDIM, std::size_t LDIM, typename opT>
struct hartree_convolute_leaf_op;
template<typename T, std::size_t NDIM, typename opT>
struct op_leaf_op;
template<typename T, std::size_t NDIM>
struct error_leaf_op;
}
namespace madness {
/// \ingroup mra
/// \addtogroup function
/// A multiresolution adaptive numerical function
template <typename T, std::size_t NDIM>
class Function : public archive::ParallelSerializableObject {
// We make all of the content of Function and FunctionImpl
// public with the intent of avoiding the cumbersome forward
// and friend declarations. However, this open access should
// not be abused.
private:
std::shared_ptr< FunctionImpl<T,NDIM> > impl;
public:
bool impl_initialized()const{
if(impl==NULL) return false;
else return true;
}
typedef FunctionImpl<T,NDIM> implT;
typedef FunctionNode<T,NDIM> nodeT;
typedef FunctionFactory<T,NDIM> factoryT;
typedef Vector<double,NDIM> coordT; ///< Type of vector holding coordinates
/// Asserts that the function is initialized
inline void verify() const {
MADNESS_ASSERT(impl);
}
/// Returns true if the function is initialized
bool is_initialized() const {
return impl.get();
}
/// Default constructor makes uninitialized function. No communication.
/// An unitialized function can only be assigned to. Any other operation will throw.
Function() : impl() {}
/// Constructor from FunctionFactory provides named parameter idiom. Possible non-blocking communication.
Function(const factoryT& factory)
: impl(new FunctionImpl<T,NDIM>(factory)) {
PROFILE_MEMBER_FUNC(Function);
}
/// Copy constructor is \em shallow. No communication, works in either basis.
Function(const Function<T,NDIM>& f)
: impl(f.impl) {
}
/// Assignment is \em shallow. No communication, works in either basis.
Function<T,NDIM>& operator=(const Function<T,NDIM>& f) {
PROFILE_MEMBER_FUNC(Function);
if (this != &f) impl = f.impl;
return *this;
}
/// Destruction of any underlying implementation is deferred to next global fence.
~Function() {}
/// Evaluates the function at a point in user coordinates. Possible non-blocking comm.
/// Only the invoking process will receive the result via the future
/// though other processes may be involved in the evaluation.
///
/// Throws if function is not initialized.
Future<T> eval(const coordT& xuser) const {
PROFILE_MEMBER_FUNC(Function);
const double eps=1e-15;
verify();
MADNESS_ASSERT(!is_compressed());
coordT xsim;
user_to_sim(xuser,xsim);
// If on the boundary, move the point just inside the
// volume so that the evaluation logic does not fail
for (std::size_t d=0; d<NDIM; ++d) {
if (xsim[d] < -eps) {
MADNESS_EXCEPTION("eval: coordinate lower-bound error in dimension", d);
}
else if (xsim[d] < eps) {
xsim[d] = eps;
}
if (xsim[d] > 1.0+eps) {
MADNESS_EXCEPTION("eval: coordinate upper-bound error in dimension", d);
}
else if (xsim[d] > 1.0-eps) {
xsim[d] = 1.0-eps;
}
}
Future<T> result;
impl->eval(xsim, impl->key0(), result.remote_ref(impl->world));
return result;
}
/// Evaluate function only if point is local returning (true,value); otherwise return (false,0.0)
/// maxlevel is the maximum depth to search down to --- the max local depth can be
/// computed with max_local_depth();
std::pair<bool,T> eval_local_only(const Vector<double,NDIM>& xuser, Level maxlevel) const {
const double eps=1e-15;
verify();
MADNESS_ASSERT(!is_compressed());
coordT xsim;
user_to_sim(xuser,xsim);
// If on the boundary, move the point just inside the
// volume so that the evaluation logic does not fail
for (std::size_t d=0; d<NDIM; ++d) {
if (xsim[d] < -eps) {
MADNESS_EXCEPTION("eval: coordinate lower-bound error in dimension", d);
}
else if (xsim[d] < eps) {
xsim[d] = eps;
}
if (xsim[d] > 1.0+eps) {
MADNESS_EXCEPTION("eval: coordinate upper-bound error in dimension", d);
}
else if (xsim[d] > 1.0-eps) {
xsim[d] = 1.0-eps;
}
}
return impl->eval_local_only(xsim,maxlevel);
}
/// Only the invoking process will receive the result via the future
/// though other processes may be involved in the evaluation.
///
/// Throws if function is not initialized.
///
/// This function is a minimally-modified version of eval()
Future<Level> evaldepthpt(const coordT& xuser) const {
PROFILE_MEMBER_FUNC(Function);
const double eps=1e-15;
verify();
MADNESS_ASSERT(!is_compressed());
coordT xsim;
user_to_sim(xuser,xsim);
// If on the boundary, move the point just inside the
// volume so that the evaluation logic does not fail
for (std::size_t d=0; d<NDIM; ++d) {
if (xsim[d] < -eps) {
MADNESS_EXCEPTION("eval: coordinate lower-bound error in dimension", d);
}
else if (xsim[d] < eps) {
xsim[d] = eps;
}
if (xsim[d] > 1.0+eps) {
MADNESS_EXCEPTION("eval: coordinate upper-bound error in dimension", d);
}
else if (xsim[d] > 1.0-eps) {
xsim[d] = 1.0-eps;
}
}
Future<Level> result;
impl->evaldepthpt(xsim, impl->key0(), result.remote_ref(impl->world));
return result;
}
/// Evaluates the function rank at a point in user coordinates. Possible non-blocking comm.
/// Only the invoking process will receive the result via the future
/// though other processes may be involved in the evaluation.
///
/// Throws if function is not initialized.
Future<long> evalR(const coordT& xuser) const {
PROFILE_MEMBER_FUNC(Function);
const double eps=1e-15;
verify();
MADNESS_ASSERT(!is_compressed());
coordT xsim;
user_to_sim(xuser,xsim);
// If on the boundary, move the point just inside the
// volume so that the evaluation logic does not fail
for (std::size_t d=0; d<NDIM; ++d) {
if (xsim[d] < -eps) {
MADNESS_EXCEPTION("eval: coordinate lower-bound error in dimension", d);
}
else if (xsim[d] < eps) {
xsim[d] = eps;
}
if (xsim[d] > 1.0+eps) {
MADNESS_EXCEPTION("eval: coordinate upper-bound error in dimension", d);
}
else if (xsim[d] > 1.0-eps) {
xsim[d] = 1.0-eps;
}
}
Future<long> result;
impl->evalR(xsim, impl->key0(), result.remote_ref(impl->world));
return result;
}
/// Evaluates a cube/slice of points (probably for plotting) ... collective but no fence necessary
/// All processes recieve the entire result (which is a rather severe limit
/// on the size of the cube that is possible).
/// Set eval_refine=true to return the refinment levels of
/// the given function.
/// @param[in] cell A Tensor describe the cube where the function to be evaluated in
/// @param[in] npt How many points to evaluate in each dimension
/// @param[in] eval_refine Wether to return the refinment levels of the given function
Tensor<T> eval_cube(const Tensor<double>& cell,
const std::vector<long>& npt,
bool eval_refine = false) const {
MADNESS_ASSERT(static_cast<std::size_t>(cell.dim(0))>=NDIM && cell.dim(1)==2 && npt.size()>=NDIM);
PROFILE_MEMBER_FUNC(Function);
const double eps=1e-14;
verify();
reconstruct();
coordT simlo, simhi;
for (std::size_t d=0; d<NDIM; ++d) {
simlo[d] = cell(d,0);
simhi[d] = cell(d,1);
}
user_to_sim(simlo, simlo);
user_to_sim(simhi, simhi);
// Move the bounding box infintesimally inside dyadic
// points so that the evaluation logic does not fail
for (std::size_t d=0; d<NDIM; ++d) {
MADNESS_ASSERT(simhi[d] >= simlo[d]);
MADNESS_ASSERT(simlo[d] >= 0.0);
MADNESS_ASSERT(simhi[d] <= 1.0);
double delta = eps*(simhi[d]-simlo[d]);
simlo[d] += delta;
simhi[d] -= 2*delta; // deliberate asymmetry
}
return impl->eval_plot_cube(simlo, simhi, npt, eval_refine);
}
/// Evaluates the function at a point in user coordinates. Collective operation.
/// Throws if function is not initialized.
///
/// This function calls eval, blocks until the result is
/// available and then broadcasts the result to everyone.
/// Therefore, if you are evaluating many points in parallel
/// it is \em vastly less efficient than calling eval
/// directly, saving the futures, and then forcing all of the
/// results.
T operator()(const coordT& xuser) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (is_compressed()) reconstruct();
T result;
if (impl->world.rank() == 0) result = eval(xuser).get();
impl->world.gop.broadcast(result);
//impl->world.gop.fence();
return result;
}
/// Evaluates the function at a point in user coordinates. Collective operation.
/// See "operator()(const coordT& xuser)" for more info
T operator()(double x, double y=0, double z=0, double xx=0, double yy=0, double zz=0) const {
coordT r;
r[0] = x;
if (NDIM>=2) r[1] = y;
if (NDIM>=3) r[2] = z;
if (NDIM>=4) r[3] = xx;
if (NDIM>=5) r[4] = yy;
if (NDIM>=6) r[5] = zz;
return (*this)(r);
}
/// Throws if function is not initialized.
///
/// This function mimics operator() by going through the
/// tree looking for the depth of the tree at the point.
/// It blocks until the result is
/// available and then broadcasts the result to everyone.
/// Therefore, if you are evaluating many points in parallel
/// it is \em vastly less efficient than calling evaldepthpt
/// directly, saving the futures, and then forcing all of the
/// results.
Level depthpt(const coordT& xuser) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (is_compressed()) reconstruct();
Level result;
if (impl->world.rank() == 0) result = evaldepthpt(xuser).get();
impl->world.gop.broadcast(result);
//impl->world.gop.fence();
return result;
}
/// Returns an estimate of the difference ||this-func||^2 from local data
/// No communication is performed. If the function is not
/// reconstructed, it throws an exception. To get the global
/// value either do a global sum of the local values or call
/// errsq
/// @param[in] func Templated interface to the a user specified function
template <typename funcT>
double errsq_local(const funcT& func) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (is_compressed()) MADNESS_EXCEPTION("Function:errsq_local:not reconstructed",0);
return impl->errsq_local(func);
}
/// Returns an estimate of the difference ||this-func|| ... global sum performed
/// If the function is compressed, it is reconstructed first. For efficient use
/// especially with many functions, reconstruct them all first, and use errsq_local
/// instead so you can perform a global sum on all at the same time.
/// @param[in] func Templated interface to the a user specified function
template <typename funcT>
double err(const funcT& func) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (VERIFY_TREE) verify_tree();
if (is_compressed()) reconstruct();
if (VERIFY_TREE) verify_tree();
double local = impl->errsq_local(func);
impl->world.gop.sum(local);
impl->world.gop.fence();
return sqrt(local);
}
/// Verifies the tree data structure ... global sync implied
void verify_tree() const {
PROFILE_MEMBER_FUNC(Function);
if (impl) impl->verify_tree();
}
/// Returns true if compressed, false otherwise. No communication.
/// If the function is not initialized, returns false.
bool is_compressed() const {
PROFILE_MEMBER_FUNC(Function);
if (impl)
return impl->is_compressed();
else
return false;
}
/// Returns the number of nodes in the function tree ... collective global sum
std::size_t tree_size() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->tree_size();
}
/// print some info about this
void print_size(const std::string name) const {
if (!impl) print("function",name,"not assigned yet");
impl->print_size(name);
}
/// Returns the maximum depth of the function tree ... collective global sum
std::size_t max_depth() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->max_depth();
}
/// Returns the maximum local depth of the function tree ... no communications
std::size_t max_local_depth() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->max_local_depth();
}
/// Returns the max number of nodes on a processor
std::size_t max_nodes() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->max_nodes();
}
/// Returns the min number of nodes on a processor
std::size_t min_nodes() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->min_nodes();
}
/// Returns the number of coefficients in the function ... collective global sum
std::size_t size() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0;
return impl->size();
}
/// Retunrs
/// Returns value of autorefine flag. No communication.
bool autorefine() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return true;
return impl->get_autorefine();
}
/// Sets the value of the autorefine flag. Optional global fence.
/// A fence is required to ensure consistent global state.
void set_autorefine(bool value, bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
verify();
impl->set_autorefine(value);
if (fence) impl->world.gop.fence();
}
/// Returns value of truncation threshold. No communication.
double thresh() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0.0;
return impl->get_thresh();
}
/// Sets the vaule of the truncation threshold. Optional global fence.
/// A fence is required to ensure consistent global state.
void set_thresh(double value, bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
verify();
impl->set_thresh(value);
if (fence) impl->world.gop.fence();
}
/// Returns the number of multiwavelets (k). No communication.
int k() const {
PROFILE_MEMBER_FUNC(Function);
verify();
return impl->get_k();
}
/// Truncate the function with optional fence. Compresses with fence if not compressed.
/// If the truncation threshold is less than or equal to zero the default value
/// specified when the function was created is used.
/// If the function is not initialized, it just returns.
///
/// Returns this for chaining.
/// @param[in] tol Tolerance for truncating the coefficients. Default 0.0 means use the implimentation's member value \c thresh instead.
/// @param[in] fence Do fence
Function<T,NDIM>& truncate(double tol = 0.0, bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return *this;
verify();
// if (!is_compressed()) compress();
impl->truncate(tol,fence);
if (VERIFY_TREE) verify_tree();
return *this;
}
/// Returns a shared-pointer to the implementation
const std::shared_ptr< FunctionImpl<T,NDIM> >& get_impl() const {
PROFILE_MEMBER_FUNC(Function);
verify();
return impl;
}
/// Replace current FunctionImpl with provided new one
void set_impl(const std::shared_ptr< FunctionImpl<T,NDIM> >& impl) {
PROFILE_MEMBER_FUNC(Function);
this->impl = impl;
}
/// Replace the current functor with the provided new one
/// presumably the new functor will be a CompositeFunctor, which will
/// change the behavior of the function: multiply the functor with the function
void set_functor(const std::shared_ptr<FunctionFunctorInterface<T, NDIM> > functor) {
this->impl->set_functor(functor);
print("set functor in mra.h");
}
bool is_on_demand() const {return this->impl->is_on_demand();}
/// Replace current FunctionImpl with a new one using the same parameters & map as f
/// If zero is true the function is initialized to zero, otherwise it is empty
template <typename R>
void set_impl(const Function<R,NDIM>& f, bool zero = true) {
impl = std::shared_ptr<implT>(new implT(*f.get_impl(), f.get_pmap(), zero));
if (zero) world().gop.fence();
}
/// Returns the world
World& world() const {
PROFILE_MEMBER_FUNC(Function);
verify();
return impl->world;
}
/// Returns a shared pointer to the process map
const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >& get_pmap() const {
PROFILE_MEMBER_FUNC(Function);
verify();
return impl->get_pmap();
}
/// Returns the square of the norm of the local function ... no communication
/// Works in either basis
double norm2sq_local() const {
PROFILE_MEMBER_FUNC(Function);
verify();
return impl->norm2sq_local();
}
/// Returns the 2-norm of the function ... global sum ... works in either basis
/// See comments for err() w.r.t. applying to many functions.
double norm2() const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (VERIFY_TREE) verify_tree();
double local = impl->norm2sq_local();
impl->world.gop.sum(local);
impl->world.gop.fence();
return sqrt(local);
}
/// Initializes information about the function norm at all length scales
void norm_tree(bool fence = true) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (VERIFY_TREE) verify_tree();
if (is_compressed()) reconstruct();
const_cast<Function<T,NDIM>*>(this)->impl->norm_tree(fence);
}
/// Compresses the function, transforming into wavelet basis. Possible non-blocking comm.
/// By default fence=true meaning that this operation completes before returning,
/// otherwise if fence=false it returns without fencing and the user must invoke
/// world.gop.fence() to assure global completion before using the function
/// for other purposes.
///
/// Noop if already compressed or if not initialized.
///
/// Since reconstruction/compression do not discard information we define them
/// as const ... "logical constness" not "bitwise constness".
const Function<T,NDIM>& compress(bool fence = true) const {
PROFILE_MEMBER_FUNC(Function);
if (!impl || is_compressed()) return *this;
if (VERIFY_TREE) verify_tree();
const_cast<Function<T,NDIM>*>(this)->impl->compress(false, false, false, fence);
return *this;
}
/// Compresses the function retaining scaling function coeffs. Possible non-blocking comm.
/// By default fence=true meaning that this operation completes before returning,
/// otherwise if fence=false it returns without fencing and the user must invoke
/// world.gop.fence() to assure global completion before using the function
/// for other purposes.
///
/// Noop if already compressed or if not initialized.
void nonstandard(bool keepleaves, bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
verify();
if (impl->is_nonstandard()) return;
if (VERIFY_TREE) verify_tree();
if (is_compressed()) reconstruct();
impl->compress(true, keepleaves, false, fence);
}
/// Converts the function from nonstandard form to standard form. Possible non-blocking comm.
/// By default fence=true meaning that this operation completes before returning,
/// otherwise if fence=false it returns without fencing and the user must invoke
/// world.gop.fence() to assure global completion before using the function
/// for other purposes.
///
/// Must be already compressed.
void standard(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
verify();
MADNESS_ASSERT(is_compressed());
impl->standard(fence);
if (fence && VERIFY_TREE) verify_tree();
}
/// Reconstructs the function, transforming into scaling function basis. Possible non-blocking comm.
/// By default fence=true meaning that this operation completes before returning,
/// otherwise if fence=false it returns without fencing and the user must invoke
/// world.gop.fence() to assure global completion before using the function
/// for other purposes.
///
/// Noop if already reconstructed or if not initialized.
///
/// Since reconstruction/compression do not discard information we define them
/// as const ... "logical constness" not "bitwise constness".
const Function<T,NDIM>& reconstruct(bool fence = true) const {
PROFILE_MEMBER_FUNC(Function);
if (!impl || !is_compressed()) return *this;
const_cast<Function<T,NDIM>*>(this)->impl->reconstruct(fence);
if (fence && VERIFY_TREE) verify_tree(); // Must be after in case nonstandard
return *this;
}
/// Sums scaling coeffs down tree restoring state with coeffs only at leaves. Optional fence. Possible non-blocking comm.
void sum_down(bool fence = true) const {
PROFILE_MEMBER_FUNC(Function);
verify();
MADNESS_ASSERT(!is_compressed());
const_cast<Function<T,NDIM>*>(this)->impl->sum_down(fence);
if (fence && VERIFY_TREE) verify_tree(); // Must be after in case nonstandard
}
/// Inplace autorefines the function. Optional fence. Possible non-blocking comm.
template <typename opT>
void refine_general(const opT& op, bool fence = true) const {
PROFILE_MEMBER_FUNC(Function);
verify();
if (is_compressed()) reconstruct();
impl->refine(op, fence);
}
struct autorefine_square_op {
bool operator()(implT* impl, const Key<NDIM>& key, const nodeT& t) const {
return impl->autorefine_square_test(key, t);
}
template <typename Archive> void serialize (Archive& ar) {}
};
/// Inplace autorefines the function using same test as for squaring.
/// return this for chaining
const Function<T,NDIM>& refine(bool fence = true) const {
refine_general(autorefine_square_op(), fence);
return *this;
}
/// Inplace broadens support in scaling function basis
void broaden(const BoundaryConditions<NDIM>& bc=FunctionDefaults<NDIM>::get_bc(),
bool fence = true) const {
verify();
reconstruct();
impl->broaden(bc.is_periodic(), fence);
}
/// Get the scaling function coeffs at level n starting from NS form
Tensor<T> coeffs_for_jun(Level n, long mode=0) {
PROFILE_MEMBER_FUNC(Function);
nonstandard(true,true);
return impl->coeffs_for_jun(n,mode);
//return impl->coeffs_for_jun(n);
}
/// Clears the function as if constructed uninitialized. Optional fence.
/// Any underlying data will not be freed until the next global fence.
void clear(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
if (impl) {
World& world = impl->world;
impl.reset();
if (fence) world.gop.fence();
}
}
/// Process 0 prints a summary of all nodes in the tree (collective)
void print_tree(std::ostream& os = std::cout) const {
PROFILE_MEMBER_FUNC(Function);
if (impl) impl->print_tree(os);
}
/// Process 0 prints a graphviz-formatted output of all nodes in the tree (collective)
void print_tree_graphviz(std::ostream& os = std::cout) const {
PROFILE_MEMBER_FUNC(Function);
os << "digraph G {" << std::endl;
if (impl) impl->print_tree_graphviz(os);
os << "}" << std::endl;
}
/// Print a summary of the load balancing info
/// This is serial and VERY expensive
void print_info() const {
PROFILE_MEMBER_FUNC(Function);
if (impl) impl->print_info();
}
struct SimpleUnaryOpWrapper {
T (*f)(T);
SimpleUnaryOpWrapper(T (*f)(T)) : f(f) {}
void operator()(const Key<NDIM>& key, Tensor<T>& t) const {
UNARY_OPTIMIZED_ITERATOR(T, t, *_p0 = f(*_p0));
}
template <typename Archive> void serialize(Archive& ar) {}
};
/// Inplace unary operation on function values
void unaryop(T (*f)(T)) {
// Must fence here due to temporary object on stack
// stopping us returning before complete
this->unaryop(SimpleUnaryOpWrapper(f));
}
/// Inplace unary operation on function values
template <typename opT>
void unaryop(const opT& op, bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
verify();
reconstruct();
impl->unary_op_value_inplace(op, fence);
}
/// Unary operation applied inplace to the coefficients
template <typename opT>
void unaryop_coeff(const opT& op,
bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
verify();
impl->unary_op_coeff_inplace(op, fence);
}
/// Unary operation applied inplace to the nodes
template <typename opT>
void unaryop_node(const opT& op,
bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
verify();
impl->unary_op_node_inplace(op, fence);
}
static void doconj(const Key<NDIM>, Tensor<T>& t) {
PROFILE_MEMBER_FUNC(Function);
t.conj();
}
/// Inplace complex conjugate. No communication except for optional fence.
/// Returns this for chaining. Works in either basis.
Function<T,NDIM> conj(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
unaryop_coeff(&Function<T,NDIM>::doconj, fence);
return *this;
}
/// Inplace, scale the function by a constant. No communication except for optional fence.
/// Works in either basis. Returns reference to this for chaining.
template <typename Q>
Function<T,NDIM>& scale(const Q q, bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
verify();
if (VERIFY_TREE) verify_tree();
impl->scale_inplace(q,fence);
return *this;
}
/// Inplace add scalar. No communication except for optional fence.
Function<T,NDIM>& add_scalar(T t, bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
verify();
if (VERIFY_TREE) verify_tree();
impl->add_scalar_inplace(t,fence);
return *this;
}
/// Inplace, general bi-linear operation in wavelet basis. No communication except for optional fence.
/// If the functions are not in the wavelet basis an exception is thrown since this routine
/// is intended to be fast and unexpected compression is assumed to be a performance bug.
///
/// Returns this for chaining.
///
/// this <-- this*alpha + other*beta
template <typename Q, typename R>
Function<T,NDIM>& gaxpy(const T& alpha,
const Function<Q,NDIM>& other, const R& beta, bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
verify();
other.verify();
MADNESS_ASSERT(is_compressed() == other.is_compressed());
if (is_compressed()) impl->gaxpy_inplace(alpha,*other.get_impl(),beta,fence);
if (not is_compressed()) impl->gaxpy_inplace_reconstructed(alpha,*other.get_impl(),beta,fence);
return *this;
}
/// Inplace addition of functions in the wavelet basis
/// Using operator notation forces a global fence after every operation.
/// Functions don't need to be compressed, it's the caller's responsibility
/// to choose an appropriate state with performance, usually compressed for 3d,
/// reconstructed for 6d)
template <typename Q>
Function<T,NDIM>& operator+=(const Function<Q,NDIM>& other) {
PROFILE_MEMBER_FUNC(Function);
if (NDIM<=3) {
compress();
other.compress();
} else {
reconstruct();
other.reconstruct();
}
MADNESS_ASSERT(is_compressed() == other.is_compressed());
if (VERIFY_TREE) verify_tree();
if (VERIFY_TREE) other.verify_tree();
return gaxpy(T(1.0), other, Q(1.0), true);
}
/// Inplace subtraction of functions in the wavelet basis
/// Using operator notation forces a global fence after every operation
template <typename Q>
Function<T,NDIM>& operator-=(const Function<Q,NDIM>& other) {
PROFILE_MEMBER_FUNC(Function);
if (NDIM<=3) {
compress();
other.compress();
} else {
reconstruct();
other.reconstruct();
}
MADNESS_ASSERT(is_compressed() == other.is_compressed());
if (VERIFY_TREE) verify_tree();
if (VERIFY_TREE) other.verify_tree();
return gaxpy(T(1.0), other, Q(-1.0), true);
}
/// Inplace scaling by a constant
/// Using operator notation forces a global fence after every operation
template <typename Q>
typename IsSupported<TensorTypeData<Q>, Function<T,NDIM> >::type &
operator*=(const Q q) {
PROFILE_MEMBER_FUNC(Function);
scale(q,true);
return *this;
}
/// Inplace squaring of function ... global comm only if not reconstructed
/// Returns *this for chaining.
Function<T,NDIM>& square(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
if (is_compressed()) reconstruct();
if (VERIFY_TREE) verify_tree();
impl->square_inplace(fence);
return *this;
}
/// Returns *this for chaining.
Function<T,NDIM>& abs(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
if (is_compressed()) reconstruct();
if (VERIFY_TREE) verify_tree();
impl->abs_inplace(fence);
return *this;
}
/// Returns *this for chaining.
Function<T,NDIM>& abs_square(bool fence = true) {
PROFILE_MEMBER_FUNC(Function);
if (is_compressed()) reconstruct();
if (VERIFY_TREE) verify_tree();
impl->abs_square_inplace(fence);
return *this;
}
/// Returns local contribution to \c int(f(x),x) ... no communication
/// In the wavelet basis this is just the coefficient of the first scaling
/// function which is a constant. In the scaling function basis we
/// must add up contributions from each box.
T trace_local() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0.0;
if (VERIFY_TREE) verify_tree();
return impl->trace_local();
}
/// Returns global value of \c int(f(x),x) ... global comm required
T trace() const {
PROFILE_MEMBER_FUNC(Function);
if (!impl) return 0.0;
T sum = impl->trace_local();
impl->world.gop.sum(sum);
impl->world.gop.fence();
return sum;
}
/// Returns local part of inner product ... throws if both not compressed
template <typename R>
TENSOR_RESULT_TYPE(T,R) inner_local(const Function<R,NDIM>& g) const {
PROFILE_MEMBER_FUNC(Function);
MADNESS_ASSERT(is_compressed());
MADNESS_ASSERT(g.is_compressed());
if (VERIFY_TREE) verify_tree();
if (VERIFY_TREE) g.verify_tree();
return impl->inner_local(*(g.get_impl()));
}
/// With this being an on-demand function, fill the MRA tree according to different criteria
/// @param[in] g the function after which the MRA structure is modeled (any basis works)
template<typename R>
Function<T,NDIM>& fill_tree(const Function<R,NDIM>& g, bool fence=true) {
MADNESS_ASSERT(g.is_initialized());
MADNESS_ASSERT(is_on_demand());
// clear what we have
impl->get_coeffs().clear();
leaf_op<T,NDIM> gnode_is_leaf(g.get_impl().get());
impl->make_Vphi(gnode_is_leaf,fence);
return *this;
}
/// With this being an on-demand function, fill the MRA tree according to different criteria
/// @param[in] op the convolution operator for screening
template<typename opT>
Function<T,NDIM>& fill_tree(const opT& op, bool fence=true) {
MADNESS_ASSERT(is_on_demand());
// clear what we have
impl->get_coeffs().clear();
op_leaf_op<T,NDIM,opT> leaf_op(&op,this->get_impl().get());
impl->make_Vphi(leaf_op,fence);
return *this;
}
/// With this being an on-demand function, fill the MRA tree according to different criteria
Function<T,NDIM>& fill_tree(bool fence=true) {
MADNESS_ASSERT(is_on_demand());
// clear what we have
impl->get_coeffs().clear();
error_leaf_op<T,NDIM> leaf_op(this->get_impl().get());
impl->make_Vphi(leaf_op,fence);
return *this;
}
/// perform the hartree product of f*g, invoked by result
template<size_t LDIM, size_t KDIM, typename opT>
void do_hartree_product(const FunctionImpl<T,LDIM>* left, const FunctionImpl<T,KDIM>* right,
const opT* op) {
// get the right leaf operator
hartree_convolute_leaf_op<T,KDIM+LDIM,LDIM,opT> leaf_op(impl.get(),left,op);
impl->hartree_product(left,right,leaf_op,true);
this->truncate(0.0,false);
}
/// perform the hartree product of f*g, invoked by result
template<size_t LDIM, size_t KDIM>
void do_hartree_product(const FunctionImpl<T,LDIM>* left, const FunctionImpl<T,KDIM>* right) {
// hartree_leaf_op<T,KDIM+LDIM> leaf_op(impl.get(),cdata.s0);
hartree_leaf_op<T,KDIM+LDIM> leaf_op(impl.get(),k());
impl->hartree_product(left,right,leaf_op,true);
this->truncate(0.0,false);
}
/// Returns the inner product
/// Not efficient for computing multiple inner products
/// @param[in] g Function, optionally on-demand
template <typename R>
TENSOR_RESULT_TYPE(T,R) inner(const Function<R,NDIM>& g) const {
PROFILE_MEMBER_FUNC(Function);
// fast return if possible
if (not this->is_initialized()) return 0.0;
if (not g.is_initialized()) return 0.0;
// if this and g are the same, use norm2()
if (this->get_impl()==g.get_impl()) {
double norm=this->norm2();
return norm*norm;
}
// do it case-by-case
if (this->is_on_demand()) return g.inner_on_demand(*this);
if (g.is_on_demand()) return this->inner_on_demand(g);
if (VERIFY_TREE) verify_tree();
if (VERIFY_TREE) g.verify_tree();
// compression is more efficient for 3D
if (NDIM==3) {
if (!is_compressed()) compress(false);
if (!g.is_compressed()) g.compress(false);
impl->world.gop.fence();
}
if (this->is_compressed() and g.is_compressed()) {
} else {
if (not this->get_impl()->is_redundant()) this->get_impl()->make_redundant(false);
if (not g.get_impl()->is_redundant()) g.get_impl()->make_redundant(false);
impl->world.gop.fence();
}
TENSOR_RESULT_TYPE(T,R) local = impl->inner_local(*g.get_impl());
impl->world.gop.sum(local);
impl->world.gop.fence();
if (this->get_impl()->is_redundant()) this->get_impl()->undo_redundant(false);
if (g.get_impl()->is_redundant()) g.get_impl()->undo_redundant(false);
impl->world.gop.fence();
return local;
}
/// Return the local part of inner product with external function ... no communication.
/// If you are going to be doing a bunch of inner_ext calls, set
/// keep_redundant to true and then manually undo_redundant when you
/// are finished.
/// @param[in] f Pointer to function of type T that take coordT arguments. This is the externally provided function
/// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
/// @param[in] keep_redundant boolean switch to turn on/off undo_redundant
/// @return Returns local part of the inner product, i.e. over the domain of all function nodes on this compute node.
T inner_ext_local(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f, const bool leaf_refine=true, const bool keep_redundant=false) const {
PROFILE_MEMBER_FUNC(Function);
if (not impl->is_redundant()) impl->make_redundant(true);
T local = impl->inner_ext_local(f, leaf_refine);
if (not keep_redundant) impl->undo_redundant(true);
return local;
}
/// Return the inner product with external function ... requires communication.
/// If you are going to be doing a bunch of inner_ext calls, set
/// keep_redundant to true and then manually undo_redundant when you
/// are finished.
/// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
/// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
/// @param[in] keep_redundant boolean switch to turn on/off undo_redundant
/// @return Returns the inner product
T inner_ext(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f, const bool leaf_refine=true, const bool keep_redundant=false) const {
PROFILE_MEMBER_FUNC(Function);
if (not impl->is_redundant()) impl->make_redundant(true);
T local = impl->inner_ext_local(f, leaf_refine);
impl->world.gop.sum(local);
impl->world.gop.fence();
if (not keep_redundant) impl->undo_redundant(true);
return local;
}
/// Return the inner product with external function ... requires communication.
/// If you are going to be doing a bunch of inner_ext calls, set
/// keep_redundant to true and then manually undo_redundant when you
/// are finished.
/// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
/// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
/// @return Returns the inner product
T inner_adaptive(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f,
const bool leaf_refine=true) const {
PROFILE_MEMBER_FUNC(Function);
reconstruct();
T local = impl->inner_adaptive_local(f, leaf_refine);
impl->world.gop.sum(local);
impl->world.gop.fence();
return local;
}
/// Return the local part of gaxpy with external function, this*alpha + f*beta ... no communication.
/// @param[in] alpha prefactor for this Function
/// @param[in] f Pointer to function of type T that take coordT arguments. This is the externally provided function
/// @param[in] beta prefactor for f
template <typename L>
void gaxpy_ext(const Function<L,NDIM>& left, T (*f)(const coordT&), T alpha, T beta, double tol, bool fence=true) const {
PROFILE_MEMBER_FUNC(Function);
if (left.is_compressed()) left.reconstruct();
impl->gaxpy_ext(left.get_impl().get(), f, alpha, beta, tol, fence);
}
/// Returns the inner product for one on-demand function
/// It does work, but it might not give you the precision you expect.
/// The assumption is that the function g returns proper sum
/// coefficients on the MRA tree of this. This might not be the case if
/// g is constructed with an implicit multiplication, e.g.
/// result = <this|g>, with g = 1/r12 | gg>
/// @param[in] g on-demand function
template <typename R>
TENSOR_RESULT_TYPE(T,R) inner_on_demand(const Function<R,NDIM>& g) const {
MADNESS_ASSERT(g.is_on_demand() and (not this->is_on_demand()));
this->reconstruct();
// save for later, will be removed by make_Vphi
std::shared_ptr< FunctionFunctorInterface<T,NDIM> > func=g.get_impl()->get_functor();
leaf_op<T,NDIM> fnode_is_leaf(this->get_impl().get());
g.get_impl()->make_Vphi(fnode_is_leaf,true); // fence here
if (VERIFY_TREE) verify_tree();
TENSOR_RESULT_TYPE(T,R) local = impl->inner_local(*g.get_impl());
impl->world.gop.sum(local);
impl->world.gop.fence();
// restore original state
g.get_impl()->set_functor(func);
g.get_impl()->get_coeffs().clear();
g.get_impl()->is_on_demand()=true;
return local;
}
/// project this on the low-dim function g: h(x) = <f(x,y) | g(y)>
/// @param[in] g low-dim function
/// @param[in] dim over which dimensions to be integrated: 0..LDIM-1 or LDIM..NDIM-1
/// @return new function of dimension NDIM-LDIM
template <typename R, size_t LDIM>
Function<TENSOR_RESULT_TYPE(T,R),NDIM-LDIM> project_out(const Function<R,LDIM>& g, const int dim) const {
if (NDIM<=LDIM) MADNESS_EXCEPTION("confused dimensions in project_out?",1);
MADNESS_ASSERT(dim==0 or dim==1);
verify();
typedef TENSOR_RESULT_TYPE(T,R) resultT;
static const size_t KDIM=NDIM-LDIM;
FunctionFactory<resultT,KDIM> factory=FunctionFactory<resultT,KDIM>(world())
.k(g.k()).thresh(g.thresh());
Function<resultT,KDIM> result=factory; // no empty() here!
FunctionImpl<R,LDIM>* gimpl = const_cast< FunctionImpl<R,LDIM>* >(g.get_impl().get());
this->reconstruct();
gimpl->make_redundant(true);
this->get_impl()->project_out(result.get_impl().get(),gimpl,dim,true);
// result.get_impl()->project_out2(this->get_impl().get(),gimpl,dim);
result.world().gop.fence();
result.get_impl()->trickle_down(true);
gimpl->undo_redundant(true);
return result;
}
template<std::size_t LDIM>
Function<T,LDIM> dirac_convolution(const bool fence=true) const {
// // this will be the result function
FunctionFactory<T,LDIM> factory=FunctionFactory<T,LDIM>(world()).k(this->k());
Function<T,LDIM> f = factory;
if(this->is_compressed()) this->reconstruct();
this->get_impl()->do_dirac_convolution(f.get_impl().get(),fence);
return f;
}
/// Replaces this function with one loaded from an archive using the default processor map
/// Archive can be sequential or parallel.
///
/// The & operator for serializing will only work with parallel archives.
template <typename Archive>
void load(World& world, Archive& ar) {
PROFILE_MEMBER_FUNC(Function);
// Type checking since we are probably circumventing the archive's own type checking
long magic = 0l, id = 0l, ndim = 0l, k = 0l;
ar & magic & id & ndim & k;
MADNESS_ASSERT(magic == 7776768); // Mellow Mushroom Pizza tel.# in Knoxville
MADNESS_ASSERT(id == TensorTypeData<T>::id);
MADNESS_ASSERT(ndim == NDIM);
impl.reset(new implT(FunctionFactory<T,NDIM>(world).k(k).empty()));
impl->load(ar);
}
/// Stores the function to an archive
/// Archive can be sequential or parallel.
///
/// The & operator for serializing will only work with parallel archives.
template <typename Archive>
void store(Archive& ar) const {
PROFILE_MEMBER_FUNC(Function);
verify();
// For type checking, etc.
ar & long(7776768) & long(TensorTypeData<T>::id) & long(NDIM) & long(k());
impl->store(ar);
}
/// change the tensor type of the coefficients in the FunctionNode
/// @param[in] targs target tensor arguments (threshold and full/low rank)
void change_tensor_type(const TensorArgs& targs, bool fence=true) {
if (not impl) return;
impl->change_tensor_type1(targs,fence);
}
/// This is replaced with left*right ... private
template <typename Q, typename opT>
Function<typename opT::resultT,NDIM>& unary_op_coeffs(const Function<Q,NDIM>& func,
const opT& op, bool fence) {
PROFILE_MEMBER_FUNC(Function);
func.verify();
MADNESS_ASSERT(!(func.is_compressed()));
if (VERIFY_TREE) func.verify_tree();
impl.reset(new implT(*func.get_impl(), func.get_pmap(), false));
impl->unaryXX(func.get_impl().get(), op, fence);
return *this;
}
/// Returns vector of FunctionImpl pointers corresponding to vector of functions
template <typename Q, std::size_t D>
static std::vector< std::shared_ptr< FunctionImpl<Q,D> > > vimpl(const std::vector< Function<Q,D> >& v) {
PROFILE_MEMBER_FUNC(Function);
std::vector< std::shared_ptr< FunctionImpl<Q,D> > > r(v.size());
for (unsigned int i=0; i<v.size(); ++i) r[i] = v[i].get_impl();
return r;
}
/// This is replaced with op(vector of functions) ... private
template <typename opT>
Function<T,NDIM>& multiop_values(const opT& op, const std::vector< Function<T,NDIM> >& vf) {
std::vector<implT*> v(vf.size(),NULL);
for (unsigned int i=0; i<v.size(); ++i) {
if (vf[i].is_initialized()) v[i] = vf[i].get_impl().get();
}
impl->multiop_values(op, v);
world().gop.fence();
if (VERIFY_TREE) verify_tree();
return *this;
}
/// Multiplication of function * vector of functions using recursive algorithm of mulxx
template <typename L, typename R>
void vmulXX(const Function<L,NDIM>& left,
const std::vector< Function<R,NDIM> >& right,
std::vector< Function<T,NDIM> >& result,
double tol,
bool fence) {
PROFILE_MEMBER_FUNC(Function);
std::vector<FunctionImpl<T,NDIM>*> vresult(right.size());
std::vector<const FunctionImpl<R,NDIM>*> vright(right.size());
for (unsigned int i=0; i<right.size(); ++i) {
result[i].set_impl(left,false);
vresult[i] = result[i].impl.get();
vright[i] = right[i].impl.get();
}
left.world().gop.fence(); // Is this still essential? Yes.
vresult[0]->mulXXvec(left.get_impl().get(), vright, vresult, tol, fence);
}
/// Same as \c operator* but with optional fence and no automatic reconstruction
/// f or g are on-demand functions
template<typename L, typename R>
void mul_on_demand(const Function<L,NDIM>& f, const Function<R,NDIM>& g, bool fence=true) {
const FunctionImpl<L,NDIM>* fimpl=f.get_impl().get();
const FunctionImpl<R,NDIM>* gimpl=g.get_impl().get();
if (fimpl->is_on_demand() and gimpl->is_on_demand()) {
MADNESS_EXCEPTION("can't multiply two on-demand functions",1);
}
if (fimpl->is_on_demand()) {
leaf_op<R,NDIM> leaf_op1(gimpl);
impl->multiply(leaf_op1,gimpl,fimpl,fence);
} else {
leaf_op<L,NDIM> leaf_op1(fimpl);
impl->multiply(leaf_op1,fimpl,gimpl,fence);
}
}
/// sparse transformation of a vector of functions ... private
template <typename R, typename Q>
void vtransform(const std::vector< Function<R,NDIM> >& v,
const Tensor<Q>& c,
std::vector< Function<T,NDIM> >& vresult,
double tol,
bool fence=true) {
PROFILE_MEMBER_FUNC(Function);
vresult[0].impl->vtransform(vimpl(v), c, vimpl(vresult), tol, fence);
}
/// This is replaced with alpha*left + beta*right ... private
template <typename L, typename R>
Function<T,NDIM>& gaxpy_oop(T alpha, const Function<L,NDIM>& left,
T beta, const Function<R,NDIM>& right, bool fence) {
PROFILE_MEMBER_FUNC(Function);
left.verify();
right.verify();
MADNESS_ASSERT(left.is_compressed() && right.is_compressed());
if (VERIFY_TREE) left.verify_tree();
if (VERIFY_TREE) right.verify_tree();
impl.reset(new implT(*left.get_impl(), left.get_pmap(), false));
impl->gaxpy(alpha,*left.get_impl(),beta,*right.get_impl(),fence);
return *this;
}
/// This is replaced with mapdim(f) ... private
Function<T,NDIM>& mapdim(const Function<T,NDIM>& f, const std::vector<long>& map, bool fence) {
PROFILE_MEMBER_FUNC(Function);
f.verify();
if (VERIFY_TREE) f.verify_tree();
for (std::size_t i=0; i<NDIM; ++i) MADNESS_ASSERT(map[i]>=0 && static_cast<std::size_t>(map[i])<NDIM);
impl.reset(new implT(*f.impl, f.get_pmap(), false));
impl->mapdim(*f.impl,map,fence);
return *this;
}
/// check symmetry of a function by computing the 2nd derivative
double check_symmetry() const {
impl->make_redundant(true);
if (VERIFY_TREE) verify_tree();
double local = impl->check_symmetry_local();
impl->world.gop.sum(local);
impl->world.gop.fence();
double asy=sqrt(local);
if (this->world().rank()==0) print("asymmetry wrt particle",asy);
impl->undo_redundant(true);
return asy;
}
/// reduce the rank of the coefficient tensors
Function<T,NDIM>& reduce_rank(const bool fence=true) {
verify();
impl->reduce_rank(impl->get_tensor_args(),fence);
return *this;
}
};
template <typename T, typename opT, int NDIM>
Function<T,NDIM> multiop_values(const opT& op, const std::vector< Function<T,NDIM> >& vf) {
Function<T,NDIM> r;
r.set_impl(vf[0], false);
r.multiop_values(op, vf);
return r;
}
/// Returns new function equal to alpha*f(x) with optional fence
template <typename Q, typename T, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(Q,T),NDIM>
mul(const Q alpha, const Function<T,NDIM>& f, bool fence=true) {
PROFILE_FUNC;
f.verify();
if (VERIFY_TREE) f.verify_tree();
Function<TENSOR_RESULT_TYPE(Q,T),NDIM> result;
result.set_impl(f, false);
result.get_impl()->scale_oop(alpha,*f.get_impl(),fence);
return result;
}
/// Returns new function equal to f(x)*alpha with optional fence
template <typename Q, typename T, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(Q,T),NDIM>
mul(const Function<T,NDIM>& f, const Q alpha, bool fence=true) {
PROFILE_FUNC;
return mul(alpha,f,fence);
}
/// Returns new function equal to f(x)*alpha
/// Using operator notation forces a global fence after each operation
template <typename Q, typename T, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(Q,T),NDIM>
operator*(const Function<T,NDIM>& f, const Q alpha) {
return mul(alpha, f, true);
}
/// Returns new function equal to alpha*f(x)
/// Using operator notation forces a global fence after each operation
template <typename Q, typename T, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(Q,T),NDIM>
operator*(const Q alpha, const Function<T,NDIM>& f) {
return mul(alpha, f, true);
}
/// Sparse multiplication --- left and right must be reconstructed and if tol!=0 have tree of norms already created
template <typename L, typename R,std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
mul_sparse(const Function<L,NDIM>& left, const Function<R,NDIM>& right, double tol, bool fence=true) {
PROFILE_FUNC;
left.verify();
right.verify();
MADNESS_ASSERT(!(left.is_compressed() || right.is_compressed()));
if (VERIFY_TREE) left.verify_tree();
if (VERIFY_TREE) right.verify_tree();
Function<TENSOR_RESULT_TYPE(L,R),NDIM> result;
result.set_impl(left, false);
result.get_impl()->mulXX(left.get_impl().get(), right.get_impl().get(), tol, fence);
return result;
}
/// Same as \c operator* but with optional fence and no automatic reconstruction
template <typename L, typename R,std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
mul(const Function<L,NDIM>& left, const Function<R,NDIM>& right, bool fence=true) {
return mul_sparse(left,right,0.0,fence);
}
/// Generate new function = op(left,right) where op acts on the function values
template <typename L, typename R, typename opT, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
binary_op(const Function<L,NDIM>& left, const Function<R,NDIM>& right, const opT& op, bool fence=true) {
PROFILE_FUNC;
if (left.is_compressed()) left.reconstruct();
if (right.is_compressed()) right.reconstruct();
Function<TENSOR_RESULT_TYPE(L,R),NDIM> result;
result.set_impl(left, false);
result.get_impl()->binaryXX(left.get_impl().get(), right.get_impl().get(), op, fence);
return result;
}
/// Out of place application of unary operation to function values with optional fence
template <typename Q, typename opT, std::size_t NDIM>
Function<typename opT::resultT, NDIM>
unary_op(const Function<Q,NDIM>& func, const opT& op, bool fence=true) {
if (func.is_compressed()) func.reconstruct();
Function<typename opT::resultT, NDIM> result;
if (VERIFY_TREE) func.verify_tree();
result.set_impl(func, false);
result.get_impl()->unaryXXvalues(func.get_impl().get(), op, fence);
return result;
}
/// Out of place application of unary operation to scaling function coefficients with optional fence
template <typename Q, typename opT, std::size_t NDIM>
Function<typename opT::resultT, NDIM>
unary_op_coeffs(const Function<Q,NDIM>& func, const opT& op, bool fence=true) {
if (func.is_compressed()) func.reconstruct();
Function<typename opT::resultT, NDIM> result;
return result.unary_op_coeffs(func,op,fence);
}
/// Use the vmra/mul(...) interface instead
/// This so that we don't have to have friend functions in a different header.
///
/// If using sparsity (tol != 0) you must have created the tree of norms
/// already for both left and right.
template <typename L, typename R, std::size_t D>
std::vector< Function<TENSOR_RESULT_TYPE(L,R),D> >
vmulXX(const Function<L,D>& left, const std::vector< Function<R,D> >& vright, double tol, bool fence=true) {
if (vright.size() == 0) return std::vector< Function<TENSOR_RESULT_TYPE(L,R),D> >();
std::vector< Function<TENSOR_RESULT_TYPE(L,R),D> > vresult(vright.size());
vresult[0].vmulXX(left, vright, vresult, tol, fence);
return vresult;
}
/// Multiplies two functions with the new result being of type TensorResultType<L,R>
/// Using operator notation forces a global fence after each operation but also
/// enables us to automatically reconstruct the input functions as required.
template <typename L, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R), NDIM>
operator*(const Function<L,NDIM>& left, const Function<R,NDIM>& right) {
if (left.is_compressed()) left.reconstruct();
if (right.is_compressed()) right.reconstruct();
MADNESS_ASSERT(not (left.is_on_demand() or right.is_on_demand()));
return mul(left,right,true);
}
/// Performs a Hartree product on the two given low-dimensional functions
template<typename T, std::size_t KDIM, std::size_t LDIM>
Function<T,KDIM+LDIM>
hartree_product(const Function<T,KDIM>& left2, const Function<T,LDIM>& right2) {
// we need both sum and difference coeffs for error estimation
Function<T,KDIM>& left = const_cast< Function<T,KDIM>& >(left2);
Function<T,LDIM>& right = const_cast< Function<T,LDIM>& >(right2);
const double thresh=FunctionDefaults<KDIM+LDIM>::get_thresh();
FunctionFactory<T,KDIM+LDIM> factory=FunctionFactory<T,KDIM+LDIM>(left.world())
.k(left.k()).thresh(thresh);
Function<T,KDIM+LDIM> result=factory.empty();
bool same=(left2.get_impl()==right2.get_impl());
// some prep work
left.nonstandard(true,true);
right.nonstandard(true,true);
result.do_hartree_product(left.get_impl().get(),right.get_impl().get());
left.standard(false);
if (not same) right.standard(false);
left2.world().gop.fence();
return result;
}
/// Performs a Hartree product on the two given low-dimensional functions
template<typename T, std::size_t KDIM, std::size_t LDIM, typename opT>
Function<T,KDIM+LDIM>
hartree_product(const Function<T,KDIM>& left2, const Function<T,LDIM>& right2,
const opT& op) {
// we need both sum and difference coeffs for error estimation
Function<T,KDIM>& left = const_cast< Function<T,KDIM>& >(left2);
Function<T,LDIM>& right = const_cast< Function<T,LDIM>& >(right2);
const double thresh=FunctionDefaults<KDIM+LDIM>::get_thresh();
FunctionFactory<T,KDIM+LDIM> factory=FunctionFactory<T,KDIM+LDIM>(left.world())
.k(left.k()).thresh(thresh);
Function<T,KDIM+LDIM> result=factory.empty();
if (result.world().rank()==0) {
print("incomplete FunctionFactory in Function::hartree_product");
print("thresh: ", thresh);
}
bool same=(left2.get_impl()==right2.get_impl());
// some prep work
left.nonstandard(true,true);
right.nonstandard(true,true);
result.do_hartree_product(left.get_impl().get(),right.get_impl().get(),&op);
left.standard(false);
if (not same) right.standard(false);
left2.world().gop.fence();
return result;
}
/// Returns new function alpha*left + beta*right optional fence and no automatic compression
template <typename L, typename R,std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
gaxpy_oop(TENSOR_RESULT_TYPE(L,R) alpha, const Function<L,NDIM>& left,
TENSOR_RESULT_TYPE(L,R) beta, const Function<R,NDIM>& right, bool fence=true) {
PROFILE_FUNC;
Function<TENSOR_RESULT_TYPE(L,R),NDIM> result;
return result.gaxpy_oop(alpha, left, beta, right, fence);
}
/// Same as \c operator+ but with optional fence and no automatic compression
template <typename L, typename R,std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
add(const Function<L,NDIM>& left, const Function<R,NDIM>& right, bool fence=true) {
return gaxpy_oop(TENSOR_RESULT_TYPE(L,R)(1.0), left,
TENSOR_RESULT_TYPE(L,R)(1.0), right, fence);
}
/// Returns new function alpha*left + beta*right optional fence, having both addends reconstructed
template<typename T, std::size_t NDIM>
Function<T,NDIM> gaxpy_oop_reconstructed(const double alpha, const Function<T,NDIM>& left,
const double beta, const Function<T,NDIM>& right, const bool fence=true) {
Function<T,NDIM> result;
result.set_impl(right,false);
MADNESS_ASSERT(not left.is_compressed());
MADNESS_ASSERT(not right.is_compressed());
result.get_impl()->gaxpy_oop_reconstructed(alpha,*left.get_impl(),beta,*right.get_impl(),fence);
return result;
}
/// Adds two functions with the new result being of type TensorResultType<L,R>
/// Using operator notation forces a global fence after each operation
template <typename L, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R), NDIM>
operator+(const Function<L,NDIM>& left, const Function<R,NDIM>& right) {
if (VERIFY_TREE) left.verify_tree();
if (VERIFY_TREE) right.verify_tree();
// no compression for high-dimensional functions
if (NDIM==6) {
left.reconstruct();
right.reconstruct();
return gaxpy_oop_reconstructed(1.0,left,1.0,right,true);
} else {
if (!left.is_compressed()) left.compress();
if (!right.is_compressed()) right.compress();
return add(left,right,true);
}
}
/// Same as \c operator- but with optional fence and no automatic compression
template <typename L, typename R,std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R),NDIM>
sub(const Function<L,NDIM>& left, const Function<R,NDIM>& right, bool fence=true) {
return gaxpy_oop(TENSOR_RESULT_TYPE(L,R)(1.0), left,
TENSOR_RESULT_TYPE(L,R)(-1.0), right, fence);
}
/// Subtracts two functions with the new result being of type TensorResultType<L,R>
/// Using operator notation forces a global fence after each operation
template <typename L, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(L,R), NDIM>
operator-(const Function<L,NDIM>& left, const Function<R,NDIM>& right) {
PROFILE_FUNC;
// no compression for high-dimensional functions
if (NDIM==6) {
left.reconstruct();
right.reconstruct();
return gaxpy_oop_reconstructed(1.0,left,-1.0,right,true);
} else {
if (!left.is_compressed()) left.compress();
if (!right.is_compressed()) right.compress();
return sub(left,right,true);
}
}
/// Create a new function that is the square of f - global comm only if not reconstructed
template <typename T, std::size_t NDIM>
Function<T,NDIM> square(const Function<T,NDIM>& f, bool fence=true) {
PROFILE_FUNC;
Function<T,NDIM> result = copy(f,true); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
return result.square(true); //fence); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
}
/// Create a new function that is the abs of f - global comm only if not reconstructed
template <typename T, int NDIM>
Function<T,NDIM> abs(const Function<T,NDIM>& f, bool fence=true) {
PROFILE_FUNC;
Function<T,NDIM> result = copy(f,true); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
return result.abs(true); //fence); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
}
/// Create a new function that is the abs_square of f - global comm only if not reconstructed
template <typename T, int NDIM>
Function<T,NDIM> abs_square(const Function<T,NDIM>& f, bool fence=true) {
PROFILE_FUNC;
Function<T,NDIM> result = copy(f,true); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
return result.abs_square(true); //fence); // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
}
/// Create a new copy of the function with different distribution and optional fence
/// Works in either basis. Different distributions imply
/// asynchronous communication and the optional fence is
/// collective.
template <typename T, std::size_t NDIM>
Function<T,NDIM> copy(const Function<T,NDIM>& f,
const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >& pmap,
bool fence = true) {
PROFILE_FUNC;
f.verify();
Function<T,NDIM> result;
typedef FunctionImpl<T,NDIM> implT;
result.set_impl(std::shared_ptr<implT>(new implT(*f.get_impl(), pmap, false)));
result.get_impl()->copy_coeffs(*f.get_impl(), fence);
if (VERIFY_TREE) result.verify_tree();
return result;
}
/// Create a new copy of the function with the same distribution and optional fence
template <typename T, std::size_t NDIM>
Function<T,NDIM> copy(const Function<T,NDIM>& f, bool fence = true) {
PROFILE_FUNC;
return copy(f, f.get_pmap(), fence);
}
/// Type conversion implies a deep copy. No communication except for optional fence.
/// Works in either basis but any loss of precision may result in different errors
/// in applied in a different basis.
///
/// The new function is formed with the options from the default constructor.
///
/// There is no automatic type conversion since this is generally a rather dangerous
/// thing and because there would be no way to make the fence optional.
template <typename T, typename Q, std::size_t NDIM>
Function<Q,NDIM> convert(const Function<T,NDIM>& f, bool fence = true) {
PROFILE_FUNC;
f.verify();
Function<Q,NDIM> result;
result.set_impl(f, false);
result.get_impl()->copy_coeffs(*f.get_impl(), fence);
return result;
}
/// Return the complex conjugate of the input function with the same distribution and optional fence
/// !!! The fence is actually not optional in the current implementation !!!
template <typename T, std::size_t NDIM>
Function<T,NDIM> conj(const Function<T,NDIM>& f, bool fence = true) {
PROFILE_FUNC;
Function<T,NDIM> result = copy(f,true);
return result.conj(fence);
}
/// Apply operator on a hartree product of two low-dimensional functions
/// Supposed to be something like result= G( f(1)*f(2))
/// the hartree product is never constructed explicitly, but its coeffs are
/// constructed on the fly and processed immediately.
/// @param[in] op the operator
/// @param[in] f1 function of particle 1
/// @param[in] f2 function of particle 2
/// @param[in] fence if we shall fence
/// @return a function of dimension NDIM=LDIM+LDIM
template <typename opT, typename T, std::size_t LDIM>
Function<TENSOR_RESULT_TYPE(typename opT::opT,T), LDIM+LDIM>
apply(const opT& op, const Function<T,LDIM>& f1, const Function<T,LDIM>& f2, bool fence=true) {
typedef TENSOR_RESULT_TYPE(T,typename opT::opT) resultT;
Function<T,LDIM>& ff1 = const_cast< Function<T,LDIM>& >(f1);
Function<T,LDIM>& ff2 = const_cast< Function<T,LDIM>& >(f2);
bool same=(ff1.get_impl()==ff2.get_impl());
// keep the leaves! They are assumed to be there later
// even for modified op we need NS form for the hartree_leaf_op
if (not same) ff1.nonstandard(true,false);
ff2.nonstandard(true,true);
FunctionFactory<T,LDIM+LDIM> factory=FunctionFactory<resultT,LDIM+LDIM>(f1.world())
.k(f1.k()).thresh(FunctionDefaults<LDIM+LDIM>::get_thresh());
Function<resultT,LDIM+LDIM> result=factory.empty().fence();
result.get_impl()->reset_timer();
op.reset_timer();
// will fence here
result.get_impl()->recursive_apply(op, f1.get_impl().get(),f2.get_impl().get(),true);
result.get_impl()->print_timer();
op.print_timer();
result.get_impl()->finalize_apply(true); // need fence before reconstruct
if (op.modified()) {
result.get_impl()->trickle_down(true);
} else {
result.reconstruct();
}
if (not same) ff1.standard(false);
ff2.standard(false);
return result;
}
/// Apply operator ONLY in non-standard form - required other steps missing !!
template <typename opT, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM>
apply_only(const opT& op, const Function<R,NDIM>& f, bool fence=true) {
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM> result;
// specialized version for 3D
if (NDIM <= 3) {
result.set_impl(f, false);
result.get_impl()->apply(op, *f.get_impl(), fence);
} else { // general version for higher dimension
bool print_timings=true;
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM> r1;
result.set_impl(f, true); // ??????????????????
r1.set_impl(f, true); // ??????????????????
result.get_impl()->reset_timer();
op.reset_timer();
result.get_impl()->apply_source_driven(op, *f.get_impl(), fence);
// recursive_apply is about 20% faster than apply_source_driven
//result.get_impl()->recursive_apply(op, f.get_impl().get(),
// r1.get_impl().get(),true); // will fence here
double time=result.get_impl()->finalize_apply(fence); // need fence before reconstruction
result.world().gop.fence();
if (print_timings) {
result.get_impl()->print_timer();
op.print_timer();
if (result.world().rank()==0) print("time in finlize_apply", time);
}
}
return result;
}
/// Apply operator in non-standard form
/// Returns a new function with the same distribution
///
/// !!! For the moment does NOT respect fence option ... always fences
template <typename opT, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM>
apply(const opT& op, const Function<R,NDIM>& f, bool fence=true) {
typedef TENSOR_RESULT_TYPE(typename opT::opT,R) resultT;
Function<R,NDIM>& ff = const_cast< Function<R,NDIM>& >(f);
Function<resultT, NDIM> result;
MADNESS_ASSERT(not f.is_on_demand());
bool print_timings=(NDIM==6);
if (VERIFY_TREE) ff.verify_tree();
ff.reconstruct();
if (print_timings) ff.print_size("ff in apply after reconstruct");
if (op.modified()) {
MADNESS_ASSERT(not op.is_slaterf12);
ff.get_impl()->make_redundant(true);
result = apply_only(op, ff, fence);
ff.get_impl()->undo_redundant(false);
result.get_impl()->trickle_down(true);
} else {
// the slaterf12 function is
// 1/(2 mu) \int d1 (1 - exp(- mu r12)) f(1)
// = 1/(2 mu) (f.trace() - \int d1 exp(-mu r12) f(1) )
// f.trace() is just a number
R ftrace=0.0;
if (op.is_slaterf12) ftrace=f.trace();
// saves the standard() step, which is very expensive in 6D
// Function<R,NDIM> fff=copy(ff);
Function<R,NDIM> fff=(ff);
fff.nonstandard(op.doleaves, true);
if (print_timings) fff.print_size("ff in apply after nonstandard");
if ((print_timings) and (f.world().rank()==0)) {
fff.get_impl()->timer_filter.print("filter");
fff.get_impl()->timer_compress_svd.print("compress_svd");
}
result = apply_only(op, fff, fence);
result.reconstruct();
// fff.clear();
if (op.destructive()) {
ff.world().gop.fence();
ff.clear();
} else {
ff.standard();
}
if (op.is_slaterf12) result=(result-ftrace).scale(-0.5/op.mu());
}
if (print_timings) result.print_size("result after reconstruction");
return result;
}
template <typename opT, typename R, std::size_t NDIM>
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM>
apply_1d_realspace_push(const opT& op, const Function<R,NDIM>& f, int axis, bool fence=true) {
PROFILE_FUNC;
Function<R,NDIM>& ff = const_cast< Function<R,NDIM>& >(f);
if (VERIFY_TREE) ff.verify_tree();
ff.reconstruct();
Function<TENSOR_RESULT_TYPE(typename opT::opT,R), NDIM> result;
result.set_impl(ff, false);
result.get_impl()->apply_1d_realspace_push(op, ff.get_impl().get(), axis, fence);
return result;
}
/// Generate a new function by reordering dimensions ... optional fence
/// You provide an array of dimension NDIM that maps old to new dimensions
/// according to
/// \code
/// newdim = mapdim[olddim]
/// \endcode
/// Works in either scaling function or wavelet basis.
///
/// Would be easy to modify this to also change the procmap here
/// if desired but presently it uses the same procmap as f.
template <typename T, std::size_t NDIM>
Function<T,NDIM>
mapdim(const Function<T,NDIM>& f, const std::vector<long>& map, bool fence=true) {
PROFILE_FUNC;
Function<T,NDIM> result;
return result.mapdim(f,map,fence);
}
/// symmetrize a function
/// @param[in] symmetry possibilities are:
/// (anti-) symmetric particle permutation ("sy_particle", "antisy_particle")
/// symmetric mirror plane ("xy", "xz", "yz")
/// @return a new function symmetrized according to the input parameter
template <typename T, std::size_t NDIM>
Function<T,NDIM>
symmetrize(const Function<T,NDIM>& f, const std::string symmetry, bool fence=true) {
Function<T,NDIM> result;
MADNESS_ASSERT(NDIM==6); // works only for pair functions
std::vector<long> map(NDIM);
// symmetric particle permutation
if (symmetry=="sy_particle") {
map[0]=3; map[1]=4; map[2]=5;
map[3]=0; map[4]=1; map[5]=2;
} else if (symmetry=="cx") {
map[0]=0; map[1]=2; map[2]=1;
map[3]=3; map[4]=5; map[5]=4;
} else if (symmetry=="cy") {
map[0]=2; map[1]=1; map[2]=0;
map[3]=5; map[4]=4; map[5]=3;
} else if (symmetry=="cz") {
map[0]=1; map[1]=0; map[2]=2;
map[3]=4; map[4]=3; map[5]=5;
} else {
if (f.world().rank()==0) {
print("unknown parameter in symmetrize:",symmetry);
}
MADNESS_EXCEPTION("unknown parameter in symmetrize",1);
}
result.mapdim(f,map,true); // need to fence here
result.get_impl()->average(*f.get_impl());
return result;
}
/// multiply a high-dimensional function with a low-dimensional function
/// @param[in] f NDIM function of 2 particles: f=f(1,2)
/// @param[in] g LDIM function of 1 particle: g=g(1) or g=g(2)
/// @param[in] particle if g=g(1) or g=g(2)
/// @return h(1,2) = f(1,2) * g(p)
template<typename T, std::size_t NDIM, std::size_t LDIM>
Function<T,NDIM> multiply(const Function<T,NDIM> f, const Function<T,LDIM> g, const int particle, const bool fence=true) {
MADNESS_ASSERT(LDIM+LDIM==NDIM);
MADNESS_ASSERT(particle==1 or particle==2);
Function<T,NDIM> result;
result.set_impl(f, true); // ???????????????????????????????????????????????????
Function<T,NDIM>& ff = const_cast< Function<T,NDIM>& >(f);
Function<T,LDIM>& gg = const_cast< Function<T,LDIM>& >(g);
if (0) {
gg.nonstandard(true,false);
ff.nonstandard(true,false);
result.world().gop.fence();
result.get_impl()->multiply(ff.get_impl().get(),gg.get_impl().get(),particle);
result.world().gop.fence();
gg.standard(false);
ff.standard(false);
result.world().gop.fence();
} else {
FunctionImpl<T,NDIM>* fimpl=ff.get_impl().get();
FunctionImpl<T,LDIM>* gimpl=gg.get_impl().get();
gimpl->make_redundant(true);
fimpl->make_redundant(false);
result.world().gop.fence();
result.get_impl()->multiply(fimpl,gimpl,particle);
result.world().gop.fence();
fimpl->undo_redundant(false);
gimpl->undo_redundant(fence);
}
// if (particle==1) result.print_size("finished multiplication f(1,2)*g(1)");
// if (particle==2) result.print_size("finished multiplication f(1,2)*g(2)");
return result;
}
template <typename T, std::size_t NDIM>
Function<T,NDIM>
project(const Function<T,NDIM>& other,
int k=FunctionDefaults<NDIM>::get_k(),
double thresh=FunctionDefaults<NDIM>::get_thresh(),
bool fence=true)
{
PROFILE_FUNC;
Function<T,NDIM> result = FunctionFactory<T,NDIM>(other.world()).k(k).thresh(thresh).empty();
other.reconstruct();
result.get_impl()->project(*other.get_impl(),fence);
return result;
}
/// Computes the scalar/inner product between two functions
/// In Maple this would be \c int(conjugate(f(x))*g(x),x=-infinity..infinity)
template <typename T, typename R, std::size_t NDIM>
TENSOR_RESULT_TYPE(T,R) inner(const Function<T,NDIM>& f, const Function<R,NDIM>& g) {
PROFILE_FUNC;
return f.inner(g);
}
/// Computes the scalar/inner product between an MRA function and an external functor
/// Currently this defaults to inner_adaptive, which might be more expensive
/// than inner_ext since it loops over all leaf nodes. If you feel inner_ext
/// is more efficient you need to call it directly
/// @param[in] f MRA function
/// @param[in] g functor
/// @result inner(f,g)
template <typename T, typename opT, std::size_t NDIM>
TENSOR_RESULT_TYPE(T,typename opT::value_type) inner(const Function<T,NDIM>& f, const opT& g) {
PROFILE_FUNC;
std::shared_ptr< FunctionFunctorInterface<double,3> > func(new opT(g));
return f.inner_adaptive(func);
}
/// Computes the scalar/inner product between an MRA function and an external functor
/// Currently this defaults to inner_adaptive, which might be more expensive
/// than inner_ext since it loops over all leaf nodes. If you feel inner_ext
/// is more efficient you need to call it directly
/// @param[in] g functor
/// @param[in] f MRA function
/// @result inner(f,g)
template <typename T, typename opT, std::size_t NDIM>
TENSOR_RESULT_TYPE(T,typename opT::value_type) inner(const opT& g, const Function<T,NDIM>& f) {
return inner(f,g);
}
template <typename T, typename R, std::size_t NDIM>
typename IsSupported<TensorTypeData<R>, Function<TENSOR_RESULT_TYPE(T,R),NDIM> >::type
operator+(const Function<T,NDIM>& f, R r) {
return (f*R(1.0)).add_scalar(r);
}
template <typename T, typename R, std::size_t NDIM>
typename IsSupported<TensorTypeData<R>, Function<TENSOR_RESULT_TYPE(T,R),NDIM> >::type
operator+(R r, const Function<T,NDIM>& f) {
return (f*R(1.0)).add_scalar(r);
}
template <typename T, typename R, std::size_t NDIM>
typename IsSupported<TensorTypeData<R>, Function<TENSOR_RESULT_TYPE(T,R),NDIM> >::type
operator-(const Function<T,NDIM>& f, R r) {
return (f*R(1.0)).add_scalar(-r);
}
template <typename T, typename R, std::size_t NDIM>
typename IsSupported<TensorTypeData<R>, Function<TENSOR_RESULT_TYPE(T,R),NDIM> >::type
operator-(R r, const Function<T,NDIM>& f) {
return (f*R(-1.0)).add_scalar(r);
}
namespace detail {
template <std::size_t NDIM>
struct realop {
typedef double resultT;
Tensor<double> operator()(const Key<NDIM>& key, const Tensor<double_complex>& t) const {
return real(t);
}
template <typename Archive> void serialize (Archive& ar) {}
};
template <std::size_t NDIM>
struct imagop {
typedef double resultT;
Tensor<double> operator()(const Key<NDIM>& key, const Tensor<double_complex>& t) const {
return imag(t);
}
template <typename Archive> void serialize (Archive& ar) {}
};
template <std::size_t NDIM>
struct abssqop {
typedef double resultT;
Tensor<double> operator()(const Key<NDIM>& key, const Tensor<double_complex>& t) const {
Tensor<double> r = abs(t);
return r.emul(r);
}
template <typename Archive> void serialize (Archive& ar) {}
};
}
/// Returns a new function that is the real part of the input
template <std::size_t NDIM>
Function<double,NDIM> real(const Function<double_complex,NDIM>& z, bool fence=true) {
return unary_op_coeffs(z, detail::realop<NDIM>(), fence);
}
/// Returns a new function that is the imaginary part of the input
template <std::size_t NDIM>
Function<double,NDIM> imag(const Function<double_complex,NDIM>& z, bool fence=true) {
return unary_op_coeffs(z, detail::imagop<NDIM>(), fence);
}
/// Returns a new function that is the square of the absolute value of the input
template <std::size_t NDIM>
Function<double,NDIM> abssq(const Function<double_complex,NDIM>& z, bool fence=true) {
return unary_op(z, detail::abssqop<NDIM>(), fence);
}
}
#include <madness/mra/funcplot.h>
namespace madness {
namespace archive {
template <class T, std::size_t NDIM>
struct ArchiveLoadImpl< ParallelInputArchive, Function<T,NDIM> > {
static inline void load(const ParallelInputArchive& ar, Function<T,NDIM>& f) {
f.load(*ar.get_world(), ar);
}
};
template <class T, std::size_t NDIM>
struct ArchiveStoreImpl< ParallelOutputArchive, Function<T,NDIM> > {
static inline void store(const ParallelOutputArchive& ar, const Function<T,NDIM>& f) {
f.store(ar);
}
};
}
template <class T, std::size_t NDIM>
void save(const Function<T,NDIM>& f, const std::string name) {
archive::ParallelOutputArchive ar2(f.world(), name.c_str(), 1);
ar2 & f;
}
template <class T, std::size_t NDIM>
void load(Function<T,NDIM>& f, const std::string name) {
archive::ParallelInputArchive ar2(f.world(), name.c_str(), 1);
ar2 & f;
}
}
/* @} */
#include <madness/mra/derivative.h>
#include <madness/mra/operator.h>
#include <madness/mra/functypedefs.h>
#include <madness/mra/vmra.h>
// #include <madness/mra/mraimpl.h> !!!!!!!!!!!!! NOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO !!!!!!!!!!!!!!!!!!
#endif // MADNESS_MRA_MRA_H__INCLUDED
|