/usr/include/madness/tensor/cblas.h is in libmadness-dev 0.10.1~gite4aa500e-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
*/
#ifndef MADNESS_LINALG_CBLAS_H__INCLUDED
#define MADNESS_LINALG_CBLAS_H__INCLUDED
/// \file cblas.h
/// \brief Define BLAS like functions
#include <madness/fortran_ctypes.h>
#include <madness/madness_config.h>
#include <madness/world/madness_exception.h>
#if defined(FORTRAN_LINKAGE_LC)
# define F77_SGEMM sgemm
# define F77_DGEMM dgemm
# define F77_CGEMM cgemm
# define F77_ZGEMM zgemm
#ifdef HAVE_INTEL_MKL
# define F77_DZGEMM dzgemm
#endif
# define F77_SGEMV sgemv
# define F77_DGEMV dgemv
# define F77_CGEMV cgemv
# define F77_ZGEMV zgemv
# define F77_SGER sger
# define F77_DGER dger
# define F77_CGER cger
# define F77_ZGER zger
# define F77_SSCAL sscal
# define F77_DSCAL dscal
# define F77_CSCAL cscal
# define F77_ZSCAL zscal
# define F77_CSSCAL csscal
# define F77_ZDSCAL zdscal
# define F77_SDOT sdot
# define F77_DDOT ddot
# define F77_CDOTU cdotu
# define F77_ZDOTU zdotu
# define F77_SAXPY saxpy
# define F77_DAXPY daxpy
# define F77_CAXPY caxpy
# define F77_ZAXPY zaxpy
#elif defined(FORTRAN_LINKAGE_LCU)
# define F77_SGEMM sgemm_
# define F77_DGEMM dgemm_
# define F77_CGEMM cgemm_
# define F77_ZGEMM zgemm_
#ifdef HAVE_INTEL_MKL
# define F77_DZGEMM dzgemm_
#endif
# define F77_SGEMV sgemv_
# define F77_DGEMV dgemv_
# define F77_CGEMV cgemv_
# define F77_ZGEMV zgemv_
# define F77_SGER sger_
# define F77_DGER dger_
# define F77_CGER cger_
# define F77_ZGER zger_
# define F77_SSCAL sscal_
# define F77_DSCAL dscal_
# define F77_CSCAL cscal_
# define F77_ZSCAL zscal_
# define F77_CSSCAL csscal_
# define F77_ZDSCAL zdscal_
# define F77_SDOT sdot_
# define F77_DDOT ddot_
# define F77_CDOTU cdotu_
# define F77_ZDOTU zdotu_
# define F77_SAXPY saxpy_
# define F77_DAXPY daxpy_
# define F77_CAXPY caxpy_
# define F77_ZAXPY zaxpy_
#elif defined(FORTRAN_LINKAGE_LCUU)
# define F77_SGEMM sgemm__
# define F77_DGEMM dgemm__
# define F77_CGEMM cgemm__
# define F77_ZGEMM zgemm__
#ifdef HAVE_INTEL_MKL
# define F77_DZGEMM dzgemm__
#endif
# define F77_SGEMV sgemv__
# define F77_DGEMV dgemv__
# define F77_CGEMV cgemv__
# define F77_ZGEMV zgemv__
# define F77_SGER sger__
# define F77_DGER dger__
# define F77_CGER cger__
# define F77_ZGER zger__
# define F77_SSCAL sscal__
# define F77_DSCAL dscal__
# define F77_CSCAL cscal__
# define F77_ZSCAL zscal__
# define F77_CSSCAL csscal__
# define F77_ZDSCAL zdscal__
# define F77_SDOT sdot__
# define F77_DDOT ddot__
# define F77_CDOTU cdotu__
# define F77_ZDOTU zdotu__
# define F77_SAXPY saxpy__
# define F77_DAXPY daxpy__
# define F77_CAXPY caxpy__
# define F77_ZAXPY zaxpy__
#elif defined(FORTRAN_LINKAGE_UC)
# define F77_SGEMM SGEMM
# define F77_DGEMM DGEMM
# define F77_CGEMM CGEMM
# define F77_ZGEMM ZGEMM
#ifdef HAVE_INTEL_MKL
# define F77_DZGEMM DZGEMM
#endif
# define F77_SGEMV SGEMV
# define F77_DGEMV DGEMV
# define F77_CGEMV CGEMV
# define F77_ZGEMV ZGEMV
# define F77_SGER SGER
# define F77_DGER DGER
# define F77_CGER CGER
# define F77_ZGER ZGER
# define F77_SSCAL SSCAL
# define F77_DSCAL DSCAL
# define F77_CSCAL CSCAL
# define F77_ZSCAL ZSCAL
# define F77_CSSCAL CSSCAL
# define F77_ZDSCAL ZDSCAL
# define F77_SDOT SDOTU
# define F77_DDOT DDOTU
# define F77_CDOTU CDOTU
# define F77_ZDOTU ZDOTU
# define F77_SAXPY SAXPY
# define F77_DAXPY DAXPY
# define F77_CAXPY CAXPY
# define F77_ZAXPY ZAXPY
#elif defined(FORTRAN_LINKAGE_UCU)
# define F77_SGEMM SGEMM_
# define F77_DGEMM DGEMM_
# define F77_CGEMM CGEMM_
# define F77_ZGEMM ZGEMM_
#ifdef HAVE_INTEL_MKL
# define F77_DZGEMM DZGEMM_
#endif
# define F77_SGEMV SGEMV_
# define F77_DGEMV DGEMV_
# define F77_CGEMV CGEMV_
# define F77_ZGEMV ZGEMV_
# define F77_SGER SGER_
# define F77_DGER DGER_
# define F77_CGER CGER_
# define F77_ZGER ZGER_
# define F77_SSCAL SSCAL_
# define F77_DSCAL DSCAL_
# define F77_CSCAL CSCAL_
# define F77_ZSCAL ZSCAL_
# define F77_CSSCAL CSSCAL_
# define F77_ZDSCAL ZDSCAL_
# define F77_SDOT SDOT_
# define F77_DDOT DDOTSUB_
# define F77_CDOTU CDOTU_
# define F77_ZDOTU ZDOTU_
# define F77_SAXPY SAXPY_
# define F77_DAXPY DAXPY_
# define F77_CAXPY CAXPY_
# define F77_ZAXPY ZAXPY_
#else
// If detected another convention complain loudly.
# error "cblas.h does not support the current Fortran symbol convention -- please, edit and check in the changes."
#endif
extern "C" {
// BLAS _GEMM declarations
void F77_SGEMM(const char*, const char*, const integer*, const integer*,
const integer*, const float*, const float*, const integer*,
const float*, const integer*, const float*, float*, const integer*);
void F77_DGEMM(const char*, const char*, const integer*, const integer*,
const integer*, const double*, const double*, const integer*,
const double*, const integer*, const double*, double*, const integer*);
void F77_CGEMM(const char*, const char*, const integer*, const integer*,
const integer*, const complex_real4*, const complex_real4*,
const integer*, const complex_real4*, const integer*,
const complex_real4*, complex_real4*, const integer*);
void F77_ZGEMM(const char*, const char*, const integer*, const integer*,
const integer*, const complex_real8*, const complex_real8*,
const integer*, const complex_real8*, const integer*,
const complex_real8*, complex_real8*, const integer*);
#ifdef HAVE_INTEL_MKL
void F77_DZGEMM(const char*, const char*, const integer*, const integer*,
const integer*, const complex_real8*, const real8*,
const integer*, const complex_real8*, const integer*,
const complex_real8*, complex_real8*, const integer*);
#endif
// BLAS _GEMV declarations
void F77_SGEMV(const char*, const integer*, const integer*, const float*,
const float*, const integer*, const float*, const integer*,
const float*, float*, const integer*);
void F77_DGEMV(const char*, const integer*, const integer*, const double*,
const double*, const integer*, const double*, const integer*,
const double*, double*, const integer*);
void F77_CGEMV(const char*, const integer*, const integer*, const complex_real4*,
const complex_real4*, const integer*, const complex_real4*,
const integer*, const complex_real4*, complex_real4*, const integer*);
void F77_ZGEMV(const char*, const integer*, const integer*, const complex_real8*,
const complex_real8*, const integer*, const complex_real8*,
const integer*, const complex_real8*, complex_real8*, const integer*);
// BLAS _GER declarations
void F77_SGER(const integer*, const integer*, const float*, const float*,
const integer*, const float*, const integer*, float*, const integer*);
void F77_DGER(const integer*, const integer*, const double*, const double*,
const integer*, const double*, const integer*, double*, const integer*);
void F77_CGER(const integer*, const integer*, const complex_real4*,
const complex_real4*, const integer*, const complex_real4*,
const integer*, complex_real4*, const integer*);
void F77_ZGER(const integer*, const integer*, const complex_real8*,
const complex_real8*, const integer*, const complex_real8*,
const integer*, complex_real8*, const integer*);
// BLAS _SCAL declarations
void F77_SSCAL(const integer*, const float*, float*, const integer*);
void F77_DSCAL(const integer*, const double*, double*, const integer*);
void F77_CSCAL(const integer*, const complex_real4*, complex_real4*, const integer*);
void F77_CSSCAL(const integer*, const float*, complex_real4*, const integer*);
void F77_ZSCAL(const integer*, const complex_real8*, complex_real8*, const integer*);
void F77_ZDSCAL(const integer*, const double*, complex_real8*, const integer*);
// BLAS _DOT declarations
float F77_SDOT(const integer*, const float*, const integer*, const float*,
const integer*);
double F77_DDOT(const integer*, const double *, const integer*,
const double *, const integer*);
void F77_CDOTU(complex_real4*, const integer*, const complex_real4*, const integer*,
const complex_real4*, const integer*);
void F77_ZDOTU(complex_real8*, const integer*, const complex_real8*, const integer*,
const complex_real8*, const integer*);
//
// BLAS _AXPY declarations (INTEGER n, NUMERICAL alpha, NUMERICAL x, INTEGER incx, NUMERICAL y, INTEGER incy )
void F77_SAXPY(const integer*, const float*, const float*, const integer*,
float*, const integer*);
void F77_DAXPY(const integer*, const double*, const double*, const integer*,
double*, const integer*);
void F77_CAXPY(const integer*, const complex_real4*, const complex_real4*,
const integer*, complex_real4*, const integer*);
void F77_ZAXPY(const integer*, const complex_real8*, const complex_real8*,
const integer*, complex_real8*, const integer*);
}
namespace madness {
namespace cblas {
/// Matrix operations for BLAS function calls
typedef enum {
NoTrans=0,
Trans=1,
ConjTrans=2
} CBLAS_TRANSPOSE;
/// Multiplies a matrix by a vector
/// \f[
/// \mathbf{C} \leftarrow \alpha \mathbf{A}^{\mathrm{OpA}} \mathbf{B}^{\mathrm{OpB}} + \beta \mathbf{C}
/// \f]
/// \param OpA Operation to be applied to matrix \f$ \mathbf{A} \f$
/// \param OpB Operation to be applied to matrix \f$ \mathbf{B} \f$
/// \param m Rows in matrix \f$ \mathbf{C} \f$
/// \param n Columns in matrix \f$ \mathbf{C} \f$
/// \param k Inner dimension size for matrices \f$ \mathbf{A} \f$ and \f$ \mathbf{B} \f$
/// \param alpha Scaling factor applied to \f$ \mathbf{A} \f$ \c * \f$ \mathbf{B} \f$
/// \param a Pointer to matrix \f$ \mathbf{A} \f$
/// \param lda The size of the leading-order dimension of matrix \f$ \mathbf{A} \f$
/// \param b Pointer to matrix \f$ \mathbf{A} \f$
/// \param ldb The size of the leading-order dimension of matrix \f$ \mathbf{B} \f$
/// \param beta Scaling factor for matrix \f$ \mathbf{C} \f$
/// \param c Pointer to matrix \f$ \mathbf{C} \f$
/// \param ldc The size of the leading-order dimension of matrix \f$ \mathbf{C} \f$
///@{
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k, const float alpha,
const float* a, const integer lda, const float* b, const integer ldb,
const float beta, float* c, const integer ldc)
{
MADNESS_ASSERT(OpA != ConjTrans);
MADNESS_ASSERT(OpB != ConjTrans);
static const char *op[] = { "n","t" };
F77_SGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
}
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k, const double alpha,
const double* a, const integer lda, const double* b, const integer ldb,
const double beta, double* c, const integer ldc) {
MADNESS_ASSERT(OpA != ConjTrans);
MADNESS_ASSERT(OpB != ConjTrans);
static const char *op[] = { "n","t" };
F77_DGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
}
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k,
const complex_real4 alpha, const complex_real4* a, const integer lda,
const complex_real4* b, const integer ldb, const complex_real4 beta,
complex_real4* c, const integer ldc)
{
static const char *op[] = { "n","t","c" };
F77_CGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
}
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k,
const complex_real8 alpha, const complex_real8* a, const integer lda,
const complex_real8* b, const integer ldb, const complex_real8 beta,
complex_real8* c, const integer ldc) {
static const char *op[] = { "n","t","c" };
F77_ZGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
}
#ifdef HAVE_INTEL_MKL
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k,
const complex_real8 alpha, const complex_real8* a, const integer lda,
const real8* b, const integer ldb, const complex_real8 beta,
complex_real8* c, const integer ldc) {
//static const char *op[] = { "n","t","c" };
//F77_ZDGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
//Don't have ZDGEMM ... only DZGEMM ... so use A*B = (BT * AT)T
//complex_real8 ctrans[m*n]; // Here assume matrices are small and can be allocated on the stack
complex_real8* ctrans = new complex_real8[m*n];
static const char *opT[] = { "t","n","c" }; // Transpose of op ... conj-transpose not working yet
MADNESS_ASSERT(OpA!=ConjTrans && OpB!=ConjTrans);
const complex_real8 zero = 0.0;
F77_DZGEMM(opT[OpB], opT[OpA], &n, &m, &k, &alpha, b, &ldb, a, &lda, &zero, ctrans, &n);
// In fortran have CTRANS(N,M) and fortran CTRANS(i,j) maps to C ctrans[j*n+i]
if (beta == zero) {
for (integer i=0; i<n; i++) {
for (integer j=0; j<m; j++) {
c[i*ldc+j] = ctrans[j*n+i];
}
}
}
else
for (integer i=0; i<n; i++) {
for (integer j=0; j<m; j++) {
c[i*ldc+j] = beta*c[i*ldc+j] + ctrans[j*n+i];
}
}
delete [] ctrans;
}
inline void gemm(const CBLAS_TRANSPOSE OpA, const CBLAS_TRANSPOSE OpB,
const integer m, const integer n, const integer k,
const complex_real8 alpha, const real8* a, const integer lda,
const complex_real8* b, const integer ldb, const complex_real8 beta,
complex_real8* c, const integer ldc) {
static const char *op[] = { "n","t","c" };
F77_DZGEMM(op[OpA], op[OpB], &m, &n, &k, &alpha, a, &lda, b, &ldb, &beta, c, &ldc);
}
#endif
///@}
/// Multiplies a matrix by a vector
/// \f[
/// \mathbf{y} \leftarrow \alpha \mathbf{A}^{\mathrm{OpA}} \mathbf{x} + \beta \mathbf{y}
/// \f]
/// \param OpA Operation to be applied to matrix \f$ \mathbf{A} \f$
/// \param m Rows in matrix \f$ \mathbf{A} \f$
/// \param n Columns in matrix \f$ \mathbf{A} \f$
/// \param alpha Scaling factor applied to \f$ \mathbf{A} \f$ \c * \f$ \mathbf{x} \f$
/// \param A Pointer to matrix \f$ \mathbf{A} \f$
/// \param lda The size of the leading-order dimension of matrix \f$ \mathbf{A} \f$
/// \param x Pointer to vector \f$ \mathbf{x} \f$
/// \param incx Stride of vector \f$ \mathbf{x} \f$
/// \param beta Scaling factor for vector \f$ \mathbf{y} \f$
/// \param y Pointer to vector \f$ \mathbf{y} \f$
/// \param incy Stride of vector \f$ \mathbf{y} \f$
///@{
inline void gemv(const CBLAS_TRANSPOSE OpA, const integer m, const integer n,
const float alpha, const float *A, const integer lda, const float *x,
const integer incx, const float beta, float *y, const integer incy)
{
MADNESS_ASSERT(OpA != ConjTrans);
static const char *op[] = { "n","t" };
F77_SGEMV(op[OpA], &m, &n, &alpha, A, &lda, x, &incx, &beta, y, &incy);
}
inline void gemv(const CBLAS_TRANSPOSE OpA, const integer m, const integer n,
const double alpha, const double *A, const integer lda, const double *x,
const integer incx, const double beta, double *y, const integer incy)
{
MADNESS_ASSERT(OpA != ConjTrans);
static const char *op[] = { "n","t" };
F77_DGEMV(op[OpA], &m, &n, &alpha, A, &lda, x, &incx, &beta, y, &incy);
}
inline void gemv(const CBLAS_TRANSPOSE OpA, const integer m, const integer n,
const complex_real4 alpha, const complex_real4 *A, const integer lda,
const complex_real4 *x, const integer incx, const complex_real4 beta,
complex_real4 *y, const integer incy)
{
static const char *op[] = { "n","t","c" };
F77_CGEMV(op[OpA], &m, &n, &alpha, A, &lda, x, &incx, &beta, y, &incy);
}
inline void gemv(const CBLAS_TRANSPOSE OpA, const integer m, const integer n,
const complex_real8 alpha, const complex_real8 *A, const integer lda,
const complex_real8 *x, const integer incx, const complex_real8 beta,
complex_real8 *y, const integer incy)
{
static const char *op[] = { "n","t","c" };
F77_ZGEMV(op[OpA], &m, &n, &alpha, A, &lda, x, &incx, &beta, y, &incy);
}
///@}
/// Multiplies vector \f$ \mathbf{x} \f$ by the transform of vector \f$ \mathbf{y} \f$
/// \f[
/// \mathbf{A} \leftarrow \alpha \mathbf{x} \mathbf{y}^{\mathrm{T}} + \mathbf{A}
/// \f]
/// \param m Rows in matrix \f$ \mathbf{A} \f$
/// \param n Columns in matrix \f$ \mathbf{A} \f$
/// \param alpha Scaling factor applied to \f$ \mathbf{x} \mathbf{y}^{\mathrm{T}} \f$
/// \param x Pointer to vector \f$ \mathbf{x} \f$
/// \param incx Stride of vector \f$ \mathbf{x} \f$
/// \param y Pointer to vector \f$ \mathbf{y} \f$
/// \param incy Stride of vector \f$ \mathbf{y} \f$
/// \param A Pointer to matrix \f$ \mathbf{A} \f$
/// \param lda The size of the leading-order dimension of matrix \f$ \mathbf{A} \f$
///@{
inline void ger(const integer m, const integer n, const float alpha,
const float *x, const integer incx, const float *y, const integer incy,
float *A, const integer lda)
{
F77_SGER(&m, &n, &alpha, x, &incx, y, &incy, A, &lda);
}
inline void ger(const integer m, const integer n, const double alpha,
const double *x, const integer incx, const double *y, const integer incy,
double *A, const integer lda)
{
F77_DGER(&m, &n, &alpha, x, &incx, y, &incy, A, &lda);
}
inline void ger(const integer m, const integer n, const complex_real4 alpha,
const complex_real4 *x, const integer incx, const complex_real4 *y,
const integer incy, complex_real4 *A, const integer lda)
{
F77_CGER(&m, &n, &alpha, x, &incx, y, &incy, A, &lda);
}
inline void ger(const integer m, const integer n, const complex_real8 alpha,
const complex_real8 *x, const integer incx, const complex_real8 *y,
const integer incy, complex_real8 *A, const integer lda)
{
F77_ZGER(&m, &n, &alpha, x, &incx, y, &incy, A, &lda);
}
///@}
/// Compute the dot product of vectors \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$
/// \f[
/// u \leftarrow \alpha \mathbf{x} \cdot \mathbf{y}
/// \f]
/// \param n Size of the vectors \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$
/// \param x Pointer to vector \f$ \mathbf{x} \f$
/// \param incx Stride of vector \f$ \mathbf{x} \f$
/// \param y Pointer to vector \f$ \mathbf{y} \f$
/// \param incy Stride of vector \f$ \mathbf{y} \f$
/// \return The dot product of \c x and \c y
///@{
inline float dot(const integer n, const float* x, const integer incx,
const float* y, const integer incy)
{
return F77_SDOT(&n, x, &incx, y, &incy);
}
inline double dot(const integer n, const double* x, const integer incx,
const double* y, const integer incy)
{
return F77_DDOT(&n, x, &incx, y, &incy);
}
inline complex_real4 dot(const integer n, const complex_real4* x,
const integer incx, const complex_real4* y, const integer incy)
{
complex_real4 result(0.0, 0.0);
F77_CDOTU(&result, &n, x, &incx, y, &incy);
return result;
}
inline complex_real8 dot(const integer n, const complex_real8* x,
const integer incx, const complex_real8* y, const integer incy)
{
complex_real8 result(0.0, 0.0);
F77_ZDOTU(&result, &n, x, &incx, y, &incy);
return result;
}
///@}
/// Scale a vector
/// \f[
/// \mathbf{x} \leftarrow \alpha \mathbf{x}
/// \f]
/// \param n The size of the vector
/// \param alpha The scaling factor for vector \f$ \mathbf{x} \f$
/// \param x Pointer to vector \f$ \mathbf{x} \f$
/// \param incx Stride for vector \f$ \mathbf{x} \f$
///@{
inline void scal(const integer n, const float alpha, float* x, const integer incx) {
F77_SSCAL(&n, &alpha, x, &incx);
}
inline void scal(const integer n, const double alpha, double* x, const integer incx) {
F77_DSCAL(&n, &alpha, x, &incx);
}
inline void scal(const integer n, const complex_real4 alpha, complex_real4* x, const integer incx) {
F77_CSCAL(&n, &alpha, x, &incx);
}
inline void scal(const integer n, const complex_real8 alpha, complex_real8* x, const integer incx) {
F77_ZSCAL(&n, &alpha, x, &incx);
}
inline void scal(const integer n, const float alpha, complex_real4* x, const integer incx) {
F77_CSSCAL(&n, &alpha, x, &incx);
}
inline void scal(const integer n, const double alpha, complex_real8* x, const integer incx) {
F77_ZDSCAL(&n, &alpha, x, &incx);
}
///@}
/// Scale and add a vector to another
/// \f[
/// \mathbf{y} \leftarrow \alpha \mathbf{x} + \mathbf{y}
/// \f]
/// \param n The size of the vector
/// \param alpha The scaling factor for vector \f$ \mathbf{x} \f$
/// \param x Pointer to vector \f$ \mathbf{x} \f$
/// \param incx Stride for vector \f$ \mathbf{x} \f$
/// \param y Pointer to vector \f$ \mathbf{y} \f$
/// \param incy Stride for vector \f$ \mathbf{y} \f$
///@{
inline void axpy(const integer n, const float alpha, float* x, const integer incx,
float* y, const integer incy) {
F77_SAXPY(&n, &alpha, x, &incx, y, &incy);
}
inline void axpy(const integer n, const double alpha, double* x, const integer incx,
double* y, const integer incy) {
F77_DAXPY(&n, &alpha, x, &incx, y, &incy);
}
inline void axpy(const integer n, const complex_real4 alpha, complex_real4* x, const integer incx,
complex_real4* y, const integer incy) {
F77_CAXPY(&n, &alpha, x, &incx, y, &incy);
}
inline void axpy(const integer n, const complex_real8 alpha, complex_real8* x, const integer incx,
complex_real8* y, const integer incy) {
F77_ZAXPY(&n, &alpha, x, &incx, y, &incy);
}
///@}
} // namespace cblas
} // namespace madness
#endif // MADNESS_LINALG_CBLAS_H__INCLUDED
|