This file is indexed.

/usr/include/madness/tensor/mxm.h is in libmadness-dev 0.10.1~gite4aa500e-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
  This file is part of MADNESS.

  Copyright (C) 2007,2010 Oak Ridge National Laboratory

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

  For more information please contact:

  Robert J. Harrison
  Oak Ridge National Laboratory
  One Bethel Valley Road
  P.O. Box 2008, MS-6367

  email: harrisonrj@ornl.gov
  tel:   865-241-3937
  fax:   865-572-0680


  $Id$
*/

#ifndef MADNESS_TENSOR_MXM_H__INCLUDED
#define MADNESS_TENSOR_MXM_H__INCLUDED

#include <madness/madness_config.h>

#ifdef HAVE_INTEL_MKL
#include <madness/tensor/cblas.h>
#endif

/// \file tensor/mxm.h
/// \brief Internal use only

// This file is ONLY included into tensor.cc ... separated here just
// to shrink file size.  Don't try to include anywhere else

// Due to both flakey compilers and performance concerns,
// we use a simple reference implementation of the mxm
// routines for all except T=double.


namespace madness {

    // Start with reference implementations.  Then provide optimized implementations, falling back to reference if not available on specific platforms

    /// Matrix \c += Matrix * matrix reference implementation (slow but correct)
    template <typename T, typename Q, typename S>
    static inline void mxm_reference(long dimi, long dimj, long dimk,
                                     T* restrict c, const Q* restrict a,
                                     const S* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(i,k)*b(k,j)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
        */
        
        for (long i=0; i<dimi; ++i) {
            for (long k=0; k<dimk; ++k) {
                for (long j=0; j<dimj; ++j) {
                    c[i*dimj+j] += a[i*dimk+k]*b[k*dimj+j];
                }
            }
        }
    }
    

    /// Matrix \c += Matrix transpose * matrix ... reference implementation (slow but correct)
    template <typename T, typename Q, typename S>
    static inline
    void mTxm_reference(long dimi, long dimj, long dimk,
                        T* restrict c, const Q* restrict a,
                        const S* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(k,i)*b(k,j)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          i loop might be long in anticipated application
        */
        
        for (long k=0; k<dimk; ++k) {
            for (long j=0; j<dimj; ++j) {
                for (long i=0; i<dimi; ++i) {
                    c[i*dimj+j] += a[k*dimi+i]*b[k*dimj+j];
                }
            }
        }
    }

    /// Matrix \c += Matrix * matrix transpose ... reference implementation (slow but correct)
    template <typename T, typename Q, typename S>
    static inline void mxmT_reference (long dimi, long dimj, long dimk,
                                       T* restrict c, const Q* restrict a,
                                       const S* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(i,k)*b(j,k)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          i loop might be long in anticipated application
        */
        
        for (long i=0; i<dimi; ++i) {
            for (long j=0; j<dimj; ++j) {
                T sum = 0;
                for (long k=0; k<dimk; ++k) {
                    sum += a[i*dimk+k]*b[j*dimk+k];
                }
                c[i*dimj+j] += sum;
            }
        }
    }
    
    /// Matrix \c += Matrix transpose * matrix transpose reference implementation (slow but correct)
    template <typename T, typename Q, typename S>
    static inline void mTxmT_reference(long dimi, long dimj, long dimk,
                                       T* restrict c, const Q* restrict a,
                                       const S* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(k,i)*b(j,k)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
        */
        
        for (long i=0; i<dimi; ++i) {
            for (long j=0; j<dimj; ++j) {
                for (long k=0; k<dimk; ++k) {
                    c[i*dimj+j] += a[k*dimi+i]*b[j*dimk+k];
                }
            }
        }
    }

    /// Matrix = Matrix transpose * matrix ... slow reference implementation
    
    /// This routine does \c C=AT*B whereas mTxm does C=C+AT*B.
    /// \code
    ///    c(i,j) = sum(k) a(k,i)*b(k,j)  <------ does not accumulate into C
    /// \endcode
    ///
    /// \c ldb is the last dimension of b in C storage (the leading dimension
    /// in fortran storage).  It is here to accomodate multiplying by a matrix
    /// stored with \c ldb>dimj which happens in madness when transforming with
    /// low rank matrices.  A matrix in dense storage has \c ldb=dimj which is
    /// the default for backward compatibility.
    template <typename aT, typename bT, typename cT>
    void mTxmq_reference(long dimi, long dimj, long dimk,
                         cT* restrict c, const aT* a, const bT* b, long ldb=-1) {
        if (ldb == -1) ldb=dimj;
        MADNESS_ASSERT(ldb>=dimj);
        //std::cout << "IN GENERIC mTxmq " << tensor_type_names[TensorTypeData<aT>::id] << " " << tensor_type_names[TensorTypeData<bT>::id] << " " << tensor_type_names[TensorTypeData<cT>::id] << "\n";
        for (long i=0; i<dimi; ++i,c+=dimj,++a) {
            for (long j=0; j<dimj; ++j) c[j] = 0.0;
            const aT *aik_ptr = a;
            for (long k=0; k<dimk; ++k,aik_ptr+=dimi) {
                aT aki = *aik_ptr;
                for (long j=0; j<dimj; ++j) {
                    c[j] += aki*b[k*ldb+j];
                }
            }
        }
    }
    

#ifdef HAVE_INTEL_MKL

    /// Matrix += Matrix * matrix ... MKL interface version
    
    /// Does \c C=C+A*B 
    /// \code
    ///    c(i,j) = c(i,j) + sum(k) a(i,k)*b(k,j)
    /// \endcode
    template <typename aT, typename bT, typename cT>
    void mxm(long dimi, long dimj, long dimk,
              cT* restrict c, const aT* a, const bT* b) {
        const cT one = 1.0;  // alpha in *gemm
        cblas::gemm(cblas::NoTrans,cblas::NoTrans,dimj,dimi,dimk,one,b,dimj,a,dimk,one,c,dimj);
    }

    /// Matrix += Matrix transpose * matrix ... MKL interface version
    
    /// Does \c C=C+AT*B 
    /// \code
    ///    c(i,j) = c(i,j) + sum(k) a(k,i)*b(k,j)
    /// \endcode
    template <typename aT, typename bT, typename cT>
    void mTxm(long dimi, long dimj, long dimk,
              cT* restrict c, const aT* a, const bT* b) {
        const cT one = 1.0;  // alpha in *gemm
        cblas::gemm(cblas::NoTrans,cblas::Trans,dimj,dimi,dimk,one,b,dimj,a,dimi,one,c,dimj);
    }

    /// Matrix += Matrix * matrix transpose ... MKL interface version
    
    /// Does \c C=C+A*BT
    /// \code
    ///    c(i,j) = c(i,j) + sum(k) a(i,k)*b(j,k)
    /// \endcode
    template <typename aT, typename bT, typename cT>
    void mxmT(long dimi, long dimj, long dimk,
              cT* restrict c, const aT* a, const bT* b) {
        const cT one = 1.0;  // alpha in *gemm
        cblas::gemm(cblas::Trans,cblas::NoTrans,dimj,dimi,dimk,one,b,dimk,a,dimk,one,c,dimj);
    }
    
    /// Matrix += Matrix transpose * matrix transpose ... MKL interface version
    
    /// Does \c C=C+AT*BT
    /// \code
    ///    c(i,j) = c(i,j) + sum(k) a(k,i)*b(j,k)
    /// \endcode
    template <typename aT, typename bT, typename cT>
    void mTxmT(long dimi, long dimj, long dimk,
               cT* restrict c, const aT* a, const bT* b) {
        const cT one = 1.0;  // alpha in *gemm
        cblas::gemm(cblas::Trans,cblas::Trans,dimj,dimi,dimk,one,b,dimk,a,dimi,one,c,dimj);
    }

    /// Matrix = Matrix transpose * matrix ... MKL interface version
    
    /// Does \c C=AT*B whereas mTxm does C=C+AT*B.  
    /// \code
    ///    c(i,j) = sum(k) a(k,i)*b(k,j)  <------ does not accumulate into C
    /// \endcode
    ///
    /// \c ldb is the last dimension of b in C storage (the leading dimension
    /// in fortran storage).  It is here to accomodate multiplying by a matrix
    /// stored with \c ldb>dimj which happens in madness when transforming with
    /// low rank matrices.  A matrix in dense storage has \c ldb=dimj which is
    /// the default for backward compatibility.
    template <typename aT, typename bT, typename cT>
    void mTxmq(long dimi, long dimj, long dimk,
               cT* restrict c, const aT* a, const bT* b, long ldb=-1) {
        if (ldb == -1) ldb=dimj;
        MADNESS_ASSERT(ldb>=dimj);

        if (dimi==0 || dimj==0) return; // nothing to do and *GEMM will complain
        if (dimk==0) {
            for (long i=0; i<dimi*dimj; i++) c[i] = 0.0;
        }
        
        const cT one = 1.0;  // alpha in *gemm
        const cT zero = 0.0; // beta  in *gemm
        cblas::gemm(cblas::NoTrans,cblas::Trans,dimj,dimi,dimk,one,b,ldb,a,dimi,zero,c,dimj);
    }
    
#else

    // Fall back to reference implementations

    template <typename T, typename Q, typename S>
    static inline void mxm(long dimi, long dimj, long dimk,
                           T* restrict c, const Q* restrict a,
                           const S* restrict b) {
        mxm_reference(dimi, dimj, dimk, c, a, b);
    }
    
    template <typename T, typename Q, typename S>
    static inline
    void mTxm(long dimi, long dimj, long dimk,
              T* restrict c, const Q* restrict a,
              const S* restrict b) {
        mTxm_reference(dimi, dimj, dimk, c, a, b);
    }

    template <typename T, typename Q, typename S>
    static inline void mxmT(long dimi, long dimj, long dimk,
                            T* restrict c, const Q* restrict a,
                            const S* restrict b) {
        mxmT_reference(dimi, dimj, dimk, c, a, b);
    }
    
    template <typename T, typename Q, typename S>
    static inline void mTxmT(long dimi, long dimj, long dimk,
                             T* restrict c, const Q* restrict a,
                             const S* restrict b) {
        mTxmT_reference(dimi, dimj, dimk, c, a, b);
    }

    template <typename aT, typename bT, typename cT>
    void mTxmq(long dimi, long dimj, long dimk,
               cT* restrict c, const aT* a, const bT* b, long ldb=-1) {
        mTxmq_reference(dimi, dimj, dimk, c, a, b, ldb);
    }

    // The following are restricted to double only
    
    /// Matrix transpose * matrix (hand unrolled version)
    
    template <>
    inline void mTxm(long dimi, long dimj, long dimk,
                     double* restrict c, const double* restrict a,
                     const double* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(k,i)*b(k,j)  <--- NOTE ACCUMULATION INTO C
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          i loop might be long in anticipated application
          
          4-way unrolled k loop ... empirically fastest on PIII
          compared to 2/3 way unrolling (though not by much).
        */
        
        long dimk4 = (dimk/4)*4;
        for (long i=0; i<dimi; ++i,c+=dimj) {
            const double* ai = a+i;
            const double* p = b;
            for (long k=0; k<dimk4; k+=4,ai+=4*dimi,p+=4*dimj) {
                double ak0i = ai[0   ];
                double ak1i = ai[dimi];
                double ak2i = ai[dimi+dimi];
                double ak3i = ai[dimi+dimi+dimi];
                const double* bk0 = p;
                const double* bk1 = p+dimj;
                const double* bk2 = p+dimj+dimj;
                const double* bk3 = p+dimj+dimj+dimj;
                for (long j=0; j<dimj; ++j) {
                    c[j] += ak0i*bk0[j] + ak1i*bk1[j] + ak2i*bk2[j] + ak3i*bk3[j];
                }
            }
            for (long k=dimk4; k<dimk; ++k) {
                double aki = a[k*dimi+i];
                const double* bk = b+k*dimj;
                for (long j=0; j<dimj; ++j) {
                    c[j] += aki*bk[j];
                }
            }
        }
    }
    
    
    
    /// Matrix * matrix transpose (hand unrolled version)
    
    template <>
    inline void mxmT(long dimi, long dimj, long dimk,
                     double* restrict c,
                     const double* restrict a, const double* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(i,k)*b(j,k)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          j loop might be long in anticipated application
          
          Unrolled i loop.  Empirically fastest on PIII compared
          to unrolling j, or both i&j.
        */
        
        long dimi2 = (dimi/2)*2;
        for (long i=0; i<dimi2; i+=2) {
            const double* ai0 = a+i*dimk;
            const double* ai1 = a+i*dimk+dimk;
            double* restrict ci0 = c+i*dimj;
            double* restrict ci1 = c+i*dimj+dimj;
            for (long j=0; j<dimj; ++j) {
                double sum0 = 0;
                double sum1 = 0;
                const double* bj = b + j*dimk;
                for (long k=0; k<dimk; ++k) {
                    sum0 += ai0[k]*bj[k];
                    sum1 += ai1[k]*bj[k];
                }
                ci0[j] += sum0;
                ci1[j] += sum1;
            }
        }
        for (long i=dimi2; i<dimi; ++i) {
            const double* ai = a+i*dimk;
            double* restrict ci = c+i*dimj;
            for (long j=0; j<dimj; ++j) {
                double sum = 0;
                const double* bj = b+j*dimk;
                for (long k=0; k<dimk; ++k) {
                    sum += ai[k]*bj[k];
                }
                ci[j] += sum;
            }
        }
    }
    
    /// Matrix * matrix (hand unrolled version)
    template <>
    inline void mxm(long dimi, long dimj, long dimk,
                    double* restrict c, const double* restrict a, const double* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(i,k)*b(k,j)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          4-way unrolled k loop ... empirically fastest on PIII
          compared to 2/3 way unrolling (though not by much).
        */
        
        long dimk4 = (dimk/4)*4;
        for (long i=0; i<dimi; ++i, c+=dimj,a+=dimk) {
            const double* p = b;
            for (long k=0; k<dimk4; k+=4,p+=4*dimj) {
                double aik0 = a[k  ];
                double aik1 = a[k+1];
                double aik2 = a[k+2];
                double aik3 = a[k+3];
                const double* bk0 = p;
                const double* bk1 = bk0+dimj;
                const double* bk2 = bk1+dimj;
                const double* bk3 = bk2+dimj;
                for (long j=0; j<dimj; ++j) {
                    c[j] += aik0*bk0[j] + aik1*bk1[j] + aik2*bk2[j] + aik3*bk3[j];
                }
            }
            for (long k=dimk4; k<dimk; ++k) {
                double aik = a[k];
                for (long j=0; j<dimj; ++j) {
                    c[j] += aik*b[k*dimj+j];
                }
            }
        }
    }
    
    /// Matrix transpose * matrix transpose (hand tiled and unrolled)
    template <>
    inline void mTxmT(long dimi, long dimj, long dimk,
                      double* restrict csave, const double* restrict asave, const double* restrict b) {
        /*
          c(i,j) = c(i,j) + sum(k) a(k,i)*b(j,k)
          
          where it is assumed that the last index in each array is has unit
          stride and the dimensions are as provided.
          
          Tiled k, copy row of a into temporary, and unroll j once.
        */
        
        const int ktile=32;
        double ai[ktile];
        long dimj2 = (dimj/2)*2;
        
        for (long klo=0; klo<dimk; klo+=ktile, asave+=ktile*dimi, b+=ktile) {
            long khi = klo+ktile;
            if (khi > dimk) khi = dimk;
            long nk = khi-klo;
            
            const double *restrict a = asave;
            double *restrict c = csave;
            for (long i=0; i<dimi; ++i,c+=dimj,++a) {
                const double* q = a;
                for (long k=0; k<nk; ++k,q+=dimi) ai[k] = *q;
                
                const double* bj0 = b;
                for (long j=0; j<dimj2; j+=2,bj0+=2*dimk) {
                    const double* bj1 = bj0+dimk;
                    double sum0 = 0;
                    double sum1 = 0;
                    for (long k=0; k<nk; ++k) {
                        sum0 += ai[k]*bj0[k];
                        sum1 += ai[k]*bj1[k];
                    }
                    c[j  ] += sum0;
                    c[j+1] += sum1;
                }
                
                for (long j=dimj2; j<dimj; ++j,bj0+=dimk) {
                    double sum = 0;
                    for (long k=0; k<nk; ++k) {
                        sum += ai[k]*bj0[k];
                    }
                    c[j] += sum;
                }
            }
        }
    }

    /*
     * mtxm, but with padded buffers.
     *
     * ext_b is the extent of the b array, so shrink() isn't needed.
     */
    template <typename aT, typename bT, typename cT>
    void mTxmq_padding(long dimi, long dimj, long dimk, long ext_b,
               cT* c, const aT* a, const bT* b) {
        const int alignment = 4;
        bool free_b = false;
        long effj = dimj;

        /* Setup a buffer for c if needed */
        cT* c_buf = c;
        if (dimj%alignment) {
            effj = (dimj | 3) + 1;
            c_buf = (cT*)malloc(sizeof(cT)*dimi*effj);
        }

        /* Copy b into a buffer if needed */
        if (ext_b%alignment) {
            free_b = true;
            bT* b_buf = (bT*)malloc(sizeof(bT)*dimk*effj);

            bT* bp = b_buf;
            for (long k=0; k<dimk; k++, bp += effj, b += ext_b)
                memcpy(bp, b, sizeof(bT)*dimj);

            b = b_buf;
            ext_b = effj;
        }

        cT* c_work = c_buf;
        /* mTxm */
        for (long i=0; i<dimi; ++i,c_work+=effj,++a) {
            for (long j=0; j<dimj; ++j) c_work[j] = 0.0;
            const aT *aik_ptr = a;
            for (long k=0; k<dimk; ++k,aik_ptr+=dimi) {
                aT aki = *aik_ptr;
                for (long j=0; j<dimj; ++j) {
                    c_work[j] += aki*b[k*ext_b+j];
                }
            }
        }

        /* Copy c out if needed */
        if (dimj%alignment) {
            cT* ct = c_buf;
            for (long i=0; i<dimi; i++, ct += effj, c += dimj)
                memcpy(c, ct, sizeof(cT)*dimj);

            free(c_buf);
        }

        /* Free the buffer for b */
        if (free_b) free((bT*)b);
    }

#ifdef HAVE_IBMBGQ
    extern void bgq_mtxmq_padded(long ni, long nj, long nk, long ej, 
            double* c, const double* a, const double* b);
    extern void bgq_mtxmq_padded(long ni, long nj, long nk, long ej, 
            __complex__ double* c, const __complex__ double* a, const __complex__ double* b);
    extern void bgq_mtxmq_padded(long ni, long nj, long nk, long ej, 
            __complex__ double* c, const double* a, const __complex__ double* b);
    extern void bgq_mtxmq_padded(long ni, long nj, long nk, long ej, 
            __complex__ double* c, const __complex__ double* a, const double* b);

    template <>
        inline void mTxmq_padding(long ni, long nj, long nk, long ej, 
                double* c, const double* a, const double* b) {
            bgq_mtxmq_padded(ni, nj, nk, ej, c, a, b);
        }

    template <>
        inline void mTxmq_padding(long ni, long nj, long nk, long ej, 
                __complex__ double* c, const __complex__ double* a, const __complex__ double* b) {
            bgq_mtxmq_padded(ni, nj, nk, ej, c, a, b);
        }

    template <>
        inline void mTxmq_padding(long ni, long nj, long nk, long ej, 
                __complex__ double* c, const double* a, const __complex__ double* b) {
            bgq_mtxmq_padded(ni, nj, nk, ej, c, a, b);
        }

    template <>
        inline void mTxmq_padding(long ni, long nj, long nk, long ej, 
                __complex__ double* c, const __complex__ double* a, const double* b) {
            bgq_mtxmq_padded(ni, nj, nk, ej, c, a, b);
        }
#elif defined(HAVE_IBMBGP)
    extern void bgpmTxmq(long ni, long nj, long nk, double* restrict c, 
                         const double* a, const double* b);
    extern void bgpmTxmq(long ni, long nj, long nk, double_complex* restrict c, 
                         const double_complex* a, const double_complex* b);
 
    template <>
    inline void mTxmq(long ni, long nj, long nk, double* restrict c, const double* a, const double* b) {
        bgpmTxmq(ni, nj, nk, c, a, b);
    }

    template <>
    inline void mTxmq(long ni, long nj, long nk, double_complex* restrict c, const double_complex* a, const double_complex* b) {
        bgpmTxmq(ni, nj, nk, c, a, b);
    }

// #elif defined(X86_64) && !defined(DISABLE_SSE3)
//     template <>
//     void mTxmq(long dimi, long dimj, long dimk,
//                double* restrict c, const double* a, const double* b);

//     template <>
//     void mTxmq(long dimi, long dimj, long dimk,
//                double_complex* restrict c, const double_complex* a, const double_complex* b);

// #ifndef __INTEL_COMPILER
//     template <>
//     void mTxmq(long dimi, long dimj, long dimk,
//                double_complex* restrict c, const double_complex* a, const double* b);
// #endif

// #elif defined(X86_32)
//     template <>
//     void mTxmq(long dimi, long dimj, long dimk,
//                double* restrict c, const double* a, const double* b);
#endif // HAVE_IBMBGQ

#endif // HAVE_INTEL_MKL
    
}    
#endif // MADNESS_TENSOR_MXM_H__INCLUDED