/usr/include/madness/tensor/solvers.h is in libmadness-dev 0.10.1~gite4aa500e-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
$Id$
*/
#ifndef MADNESS_LINALG_SOLVERS_H__INCLUDED
#define MADNESS_LINALG_SOLVERS_H__INCLUDED
#include <madness/tensor/tensor.h>
#include <madness/world/print.h>
#include <iostream>
#include <madness/tensor/tensor_lapack.h>
/*!
\file solvers.h
\brief Defines interfaces for optimization and non-linear equation solvers
\ingroup solvers
*/
namespace madness {
/*!
\brief Solves non-linear equation using KAIN (returns coefficients to compute next vector)
\ingroup solvers
The Krylov-accelerated inexact-Newton method employs directional
derivatives to estimate the Jacobian in the subspace and
separately computes updates in the subspace and its complement.
We wish to solve the non-linear equations \f$ f(x)=0 \f$ where
\f$ f \f$ and \f$ x \f$ are vectors of the same dimension (e.g.,
consider both being MADNESS functions).
Define the following matrices and vector (with \f$ i \f$ and \f$
j \f$ denoting previous iterations in the Krylov subspace and
\f$ m \f$ the current iteration):
\f{eqnarray*}{
Q_{i j} & = & \langle x_i \mid f_j \rangle \\
A_{i j} & = & \langle x_i - x_m \mid f_j - f_m \rangle = Q_{i j} - Q_{m j} - Q_{i m} + Q{m m} \\
b_i & =& -\langle x_i - x_m \mid f_m \rangle = -Q_{i m} + Q_{m m}
\f}
The subspace equation is of dimension \f$ m \f$ (assuming iterations
are indexed from zero) and is given by
\f[
A c = b
\f]
The interior and exterior updates may be combined into one simple expression
as follows. First, define an additional element of the solution vector
\f[
c_m = 1 - \sum_{i<m} c_i
\f]
and then the new vector (guess for next iteration) is given by
\f[
x_{m+1} = \sum_{i \le m}{c_i ( x_i - f_i)}
\f]
To employ the solver, each iteration
-# Compute the additional row and column of the matrix \f$ Q \f$
that is the inner product between solution vectors (\f$ x_i \f$) and residuals
(\f$ f_j \f$).
-# Call this routine to compute the coefficients \f$ c \f$ and from these
compute the next solution vector
-# Employ step restriction or line search as necessary to ensure stable/robust solution.
@param[in] Q The matrix of inner products between subspace vectors and residuals.
@param[in] rcond Threshold for discarding small singular values in the subspace equations.
@return Vector for computing next solution vector
*/
template <typename T>
Tensor<T> KAIN(const Tensor<T>& Q, double rcond=1e-12) {
const int nvec = Q.dim(0);
const int m = nvec-1;
if (nvec == 1) {
Tensor<T> c(1);
c(0L) = 1.0;
return c;
}
Tensor<T> A(m,m);
Tensor<T> b(m);
for (long i=0; i<m; ++i) {
b(i) = Q(m,m) - Q(i,m);
for (long j=0; j<m; ++j) {
A(i,j) = Q(i,j) - Q(m,j) - Q(i,m) + Q(m,m);
}
}
// print("Q");
// print(Q);
// print("A");
// print(A);
// print("b");
// print(b);
Tensor<T> x;
Tensor<double> s, sumsq;
long rank;
gelss(A, b, rcond, x, s, rank, sumsq);
// print("singular values", s);
// print("rank", rank);
// print("solution", x);
Tensor<T> c(nvec);
T sumC = 0.0;
for (long i=0; i<m; ++i) sumC += x(i);
c(Slice(0,m-1)) = x;
// print("SUMC", nvec, m, sumC);
c(m) = 1.0 - sumC;
// print("returned C", c);
return c;
}
/// The interface to be provided by targets for non-linear equation solver
/// \ingroup solvers
struct SolverTargetInterface {
/// Should return the resdiual (vector F(x))
virtual Tensor<double> residual(const Tensor<double>& x) = 0;
/// Override this to return \c true if the Jacobian is implemented
virtual bool provides_jacobian() const {return false;}
/// Some solvers require the jacobian or are faster if an analytic form is available
/// J(i,j) = partial F[i] over partial x[j] where F(x) is the vector valued residual
virtual Tensor<double> jacobian(const Tensor<double>& x) {
throw "not implemented";
}
/// Implement this if advantageous to compute residual and jacobian simultaneously
virtual void residual_and_jacobian(const Tensor<double>& x,
Tensor<double>& residual, Tensor<double>& jacobian) {
residual = this->residual(x);
jacobian = this->jacobian(x);
}
virtual ~SolverTargetInterface() {}
};
/// The interface to be provided by functions to be optimized
/// \ingroup solvers
struct OptimizationTargetInterface {
/// Should return the value of the objective function
virtual double value(const Tensor<double>& x) = 0;
/// Override this to return true if the derivative is implemented
virtual bool provides_gradient() const {return false;}
/// Should return the derivative of the function
virtual Tensor<double> gradient(const Tensor<double>& x) {
throw "not implemented";
}
/// Reimplement if more efficient to evaluate both value and gradient in one call
virtual void value_and_gradient(const Tensor<double>& x,
double& value,
Tensor<double>& gradient) {
value = this->value(x);
gradient = this->gradient(x);
}
/// Numerical test of the derivative ... optionally prints to stdout, returns max abs error
double test_gradient(Tensor<double>& x, double value_precision, bool doprint=true);
virtual ~OptimizationTargetInterface(){}
};
/// The interface to be provided by optimizers
/// \ingroup solvers
struct OptimizerInterface {
virtual bool optimize(Tensor<double>& x) = 0;
virtual bool converged() const = 0;
virtual double value() const = 0;
virtual double gradient_norm() const = 0;
virtual ~OptimizerInterface(){}
};
/// Unconstrained minimization via steepest descent
/// \ingroup solvers
class SteepestDescent : public OptimizerInterface {
std::shared_ptr<OptimizationTargetInterface> target;
const double tol;
double f;
double gnorm;
public:
SteepestDescent(const std::shared_ptr<OptimizationTargetInterface>& tar,
double tol = 1e-6,
double value_precision = 1e-12,
double gradient_precision = 1e-12);
bool optimize(Tensor<double>& x);
bool converged() const;
double gradient_norm() const;
double value() const;
virtual ~SteepestDescent() { }
};
/// Optimization via quasi-Newton (BFGS or SR1 update)
/// \ingroup solvers
/// This is presently not a low memory algorithm ... we really need one!
class QuasiNewton : public OptimizerInterface {
protected:
std::string update; // One of BFGS or SR1
std::shared_ptr<OptimizationTargetInterface> target;
const int maxiter;
const double tol;
const double value_precision; // Numerical precision of value
const double gradient_precision; // Numerical precision of each element of residual
double f;
double gnorm;
Tensor<double> h;
int n;
bool printtest;
public:
/// make this static for other QN classed to have access to it
static double line_search(double a1, double f0, double dxgrad,
const Tensor<double>& x, const Tensor<double>& dx,
std::shared_ptr<OptimizationTargetInterface> target,
double value_precision);
/// make this static for other QN classed to have access to it
static void hessian_update_sr1(const Tensor<double>& s, const Tensor<double>& y,
Tensor<double>& hessian);
/// make this static for other QN classed to have access to it
static void hessian_update_bfgs(const Tensor<double>& dx,
const Tensor<double>& dg, Tensor<double>& hessian);
Tensor<double> new_search_direction(const Tensor<double>& g) const;
public:
QuasiNewton(const std::shared_ptr<OptimizationTargetInterface>& tar,
int maxiter = 20,
double tol = 1e-6,
double value_precision = 1e-12,
double gradient_precision = 1e-12);
/// Choose update method (currently only "BFGS" or "SR1")
void set_update(const std::string& method);
/// Choose update method (currently only "BFGS" or "SR1")
void set_test(const bool& test_level);
/// Runs the optimizer
/// @return True if converged
bool optimize(Tensor<double>& x);
/// After running the optimizer returns true if converged
/// @return True if converged
bool converged() const;
/// Value of objective function
/// @return Value of objective function
double value() const;
/// Resets Hessian to default guess
void reset_hessian() {h = Tensor<double>();}
/// Sets Hessian to given matrix
void set_hessian(const Tensor<double>& matrix) {h = madness::copy(matrix);}
/// Value of gradient norm
/// @return Norm of gradient of objective function
double gradient_norm() const;
virtual ~QuasiNewton() {}
};
}
#endif // MADNESS_LINALG_SOLVERS_H__INCLUDED
|