This file is indexed.

/usr/include/madness/world/stack.h is in libmadness-dev 0.10.1~gite4aa500e-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
  This file is part of MADNESS.

  Copyright (C) 2007,2010 Oak Ridge National Laboratory

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

  For more information please contact:

  Robert J. Harrison
  Oak Ridge National Laboratory
  One Bethel Valley Road
  P.O. Box 2008, MS-6367

  email: harrisonrj@ornl.gov
  tel:   865-241-3937
  fax:   865-572-0680
*/

#ifndef MADNESS_WORLD_STACK_H__INCLUDED
#define MADNESS_WORLD_STACK_H__INCLUDED

/**
 \file stack.h
 \brief Implement \c Stack for a fixed-size stack container.
 \ingroup containers
*/

#include <madness/world/madness_exception.h>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <memory>
#include <new>
#include <type_traits>

namespace madness {

    namespace detail {

        /// Base class for Stack which implements basic memory operations for non-POD objects.

        /// \tparam T The data type of the stack.
        /// \tparam isPod An auxiliary template parameter to select the
        ///    POD/non-POD versions of this class.
        template <typename T, bool isPod>
        class StackBase {
        protected:

            /// Destroy a non-POD object.

            /// \param[in] ptr A pointer to the object to be destroyed.
            static void destroy(T* ptr) { ptr->~T(); }

            /// Destroy a range of non-POD objects.

            /// \param[in] first The beginning of the range to be destroyed.
            /// \param[in] last The end of the range to be destroyed.
            static void destroy(T* first, T* last) {
                while(first != last) {
                    --last;
                    destroy(last);
                }
            }

            /// Move a range of POD objects.

            /// \param[in] first The beginning of the range to be moved.
            /// \param[in] last The end of the range to be moved.
            /// \param[in] dest Pointer to the uninitialized memory range.
            static void uninitialized_move(T* first, T* last, T* dest) {
                for (; first != last; ++first, ++dest) {
                    ::new (dest) T(std::move(*first));
                    destroy(first);
                }
            }

            /// Copy a range of POD objects.

            /// \param[in] first The beginning of the range to be copied.
            /// \param[in] last The end of the range to be copied.
            /// \param[in] dest Pointer to the uninitialized memory range.
            static void uninitialized_copy(T* first, T* last, T* dest) {
                std::uninitialized_copy(first, last, dest);
            }

        }; // class StackBase


        /// Base class for `Stack` which implements basic memory operations for POD objects.

        /// \tparam T The data type of the stack.
        template <typename T>
        class StackBase<T, true> {
        protected:

            /// Destroy a POD object (no op).

            /// No need to destroy PODs.
            static void destroy(T*) { }

            /// Destroy a range of POD objects (no op).

            /// No need to destroy PODs.
            static void destroy(T*, T*) { }

            /// Move a range of POD objects to an uninitialized buffer.

            /// \param[in] first The beginning of the range to be moved.
            /// \param[in] last The end of the range to be moved.
            /// \param[in] dest Pointer to the uninitialized memory buffer.
            static void uninitialized_move(T* first, T* last, T* dest) {
                // Use simple copy for pods
                if (first != last)
                    std::memcpy(dest, first, (last - first) * sizeof(T));
            }

            /// Copy a range of POD objects to an uninitialized buffer.

            /// \param[in] first The beginning of the range to be copied.
            /// \param[in] last The end of the range to be copied.
            /// \param[in] dest Pointer to the uninitialized memory buffer.
            static void uninitialized_copy(T* first, T* last, T* dest) {
                // Use simple copy for pods
                if (first != last)
                    std::memcpy(dest, first, (last - first) * sizeof(T));
            }

        }; // class StackBase<T, true>

    } // namespace detail

    /// Dynamically sized Stack with small stack size optimization.

    /// This object is a dynamically sized stack that functions similarly to a
    /// \c std::vector. It also includes an optimization for small stack sizes
    /// that avoids memory allocations when the stack size is less than or equal
    /// to \c N.
    /// \tparam T The type of data stored in the stack.
    /// \tparam N The fixed size of the stack.
    template <typename T, unsigned int N>
    class Stack : public detail::StackBase<T, std::is_pod<T>::value> {
    public:
        typedef T value_type; ///< Type of the stack elements.
        typedef T& reference; ///< Element reference type.
        typedef const T& const_reference; ///< Element constant reference type.
        typedef unsigned int size_type; ///< An unsigned integral type.

    private:
        T* data_; ///< Pointer to the stack data.
        size_type size_; ///< Number of elements on the stack.
        size_type capacity_; ///< The maximum size, in elements, of the \c data_ buffer.
        char buffer_[sizeof(T) * N]; ///< Static buffer for storing a small number of elements.

        typedef detail::StackBase<T, std::is_pod<T>::value> StackBase_;

        using StackBase_::destroy;
        using StackBase_::uninitialized_move;
        using StackBase_::uninitialized_copy;

        /// Check if the stack is using the small buffer to store data.

        /// \return True if the small buffer is being used; false otherwise.
        bool is_small() const { return data_ == static_cast<const void*>(buffer_); }

        /// Allocate a raw buffer.

        /// Allocate an uninitialized buffer.
        /// \param[in] n The size of the new buffer.
        /// \return Pointer to the new buffer.
        T* allocate(const size_type n) {
            void* const buffer = std::malloc(n * sizeof(T));
            if(! buffer)
                throw std::bad_alloc();

            return reinterpret_cast<T*>(buffer);
        }

        /// \todo Brief description needed.

        /// \todo Parameter description needed.
        /// \param other Description needed.
        void move(Stack<T,N>& other) {
            // Move the stack data from other to this object
            if(other.is_small()) {
                // Other is using the static buffer space, so the data must
                // be moved to this object's static buffer.
                data_ = reinterpret_cast<T*>(buffer_);
                uninitialized_move(other.data_, other.data_ + other.size_, data_);
                capacity_ = N;
            } else {
                // Other is using an allocated buffer, so move the pointer
                // to the data
                data_ = other.data_;
                capacity_ = other.capacity_;

                other.data_ = reinterpret_cast<T*>(other.buffer_);
                other.capacity_ = N;
            }
            size_ = other.size_;
            other.size_ = 0u;
        }

        /// Deallocate memory.

        /// Destroy the pointer if it is a dynamically allocated buffer;
        /// otherwise do nothing.
        void deallocate() { if(! is_small()) std::free(data_); }

    public:
        /// Construct an empty stack.

        /// The capacity of the stack is \c N.
        Stack() :
            data_(reinterpret_cast<T*>(buffer_)),
            size_(0u), capacity_(N)
        { }

        /// Copy constructor.

        /// If the size of \c other is less than or equal to \c N, then this
        /// object will use the small buffer. Otherwise, it will allocate memory
        /// and copy the data of \c other. The capacity of the object will be
        /// equal to <tt>max(N, other.size())</tt>.
        /// \param[in] other The stack to be copied.
        Stack(const Stack<T,N>& other) {
            if(other.size_ > N) {
                data_ = allocate(other.size_);
                capacity_ = other.size_;
            } else {
                data_ = reinterpret_cast<T*>(buffer_);
                capacity_ = N;
            }
            size_ = other.size_;
            uninitialized_copy(other.data_, other.data_ + other.size_, data_);
        }

        /// Move constructor.

        /// Move the data from \c other to this object.
        /// \param[in] other The original stack.
        Stack(Stack<T, N>&& other) { move(other); }

        /// Assignment operator.

        /// If the size of \c other is less than or equal to \c N, then this
        /// object will use the small buffer. Otherwise, it will allocate memory
        /// and copy the data of \c other. The capacity of the object will be
        /// equal to <tt>max(N, other.size())</tt>.
        /// \param[in] other The stack to be copied.
        Stack<T,N>& operator=(const Stack<T,N>& other) {
            if(this != &other) { // avoid self assignment

                if(capacity_ < other.size_) {
                    // Allocate a larger buffer
                    T* const buffer = allocate(other.size_);
                    uninitialized_copy(other.data_, other.data_ + other.size_, buffer);

                    // Destroy the existing buffer
                    destroy(data_, data_ + size_);
                    deallocate();

                    data_ = buffer;
                    capacity_ = other.size_;
                } else {
                    destroy(data_, data_ + size_);
                    uninitialized_copy(other.data_, other.data_ + other.size_, data_);
                }

                size_ = other.size_;
            }

            return *this;
        }

        /// Move assignment operator.

        /// Move the data from \c other to this object. If \c other object is
        /// is using the static buffer, the data is moved to this object's
        /// static buffer. Otherwise, the pointer to the allocated buffer is
        /// moved.
        /// \param[in] other The other stack object to be moved
        /// \note \c other is left in a default constructed state so that it can
        /// continue to be used.
        Stack<T,N>& operator=(Stack<T,N>&& other) {
            if(this != &other) { // avoid self assignment
                destroy(data_, data_ + size_);
                deallocate();
                move(other);
            }

            return *this;
        }

        /// Destructor.
        ~Stack() {
            destroy(data_, data_ + size_);
            deallocate();
        }

        /// Push a new item onto the stack.

        /// Push an item onto the top of the stack. If the stack size is equal
        /// to the capacity, resize the stack (double).
        /// \param[in] value The item to be pushed onto the stack.
        void push(const_reference value) {
            // Grow the buffer if there is no more free space on the stack
            if(size_ == capacity_) {
                const size_type n = (size_ << 1u) + 1u;

                // Allocate new storage
                T* const new_data = allocate(n);

                // Move data to new vector
                uninitialized_move(data_, data_ + size_, new_data);

                // Deallocate the current data buffer
                deallocate();

                // Update the stack data and capacity
                data_ = new_data;
                capacity_ = n;
            }

            // Add value to the top of the stack
            ::new (data_ + size_) T(value);
            ++size_;
        }

        /// Pop an item off of the stack.

        /// \throw MadnessException (via MADNESS_ASSERT) if the stack is empty.
        void pop() {
            MADNESS_ASSERT(size_);
            --size_;
            destroy(data_ + size_);
        }

        /// Get the last item pushed onto the stack.

        /// \return A reference to the top of the stack.
        /// \throw MadnessException When the stack is empty
        reference top() {
            MADNESS_ASSERT(size_);
            return data_[size_ - 1];
        }

        /// Get the last item pushed onto the stack.

        /// \return A const reference to the top of the stack.
        /// \throw MadnessException When the stack is empty.
        const_reference top() const {
            MADNESS_ASSERT(size_);
            return data_[size_ - 1];
        }

        /// Size accessor.

        /// \return The number of items pushed to the stack.
        size_type size() const { return size_; }

        /// Capacity accessor.

        /// \return The size of allocated storage capacity.
        size_type capacity() const { return capacity_; }

        /// Check if the stack is empty.

        /// \return True if the size of the stack is 0; otherwise false.
        bool empty() const { return ! size_; }

        /// Empty the stack.

        /// Destroy items on the stack (if any) and set the size to 0.
        void clear() {
            destroy(data_, data_ + size_);
            size_ = 0u;
        }

        /// Empty the stack and free memory.

        /// Destroy items on the stack (if any) and return it to the
        /// default constructed state.
        void reset() {
            destroy(data_, data_ + size_);
            deallocate();
            data_ = reinterpret_cast<T*>(buffer_);
            size_ = 0u;
            capacity_ = N;
        }

        /// Data accessor.

        /// \return A const pointer to the stack data.
        const T* data() const { return data_; }

        /// Data accessor.

        /// \return A pointer to the stack data.
        T* data() { return data_; }

    }; // class Stack

} // namespace madness

#endif // MADNESS_WORLD_STACK_H__INCLUDED