This file is indexed.

/usr/include/mathicgb.h is in libmathicgb-dev 1.0~git20170104-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
#ifndef MATHICGB_MATHICGB_GUARD
#define MATHICGB_MATHICGB_GUARD

#include <ostream>
#include <vector>
#include <utility>

// The main function in this file is computeGroebnerBasis. See the comment
// preceding that function for an example of how to use this library
// interface.

extern "C" {
  // Put a C function in the library so that it can be detected by the autoconf
  // macro AC_CHECK_LIB. That macro can only check for libraries that contain
  // at least one C function.
  void libmathicgbIsPresent(void); // This function does nothing.
  extern char MATHICGB_VERSION_STRING[];
}
#define MATHICGB_VERSION VERSION

/// The classes and functions in this namespace make up the public interface
/// of MathicGB. You should not have to update your code when upgrading to a
/// newer minor revision of MathicGB if you only use the public interface.
namespace mgb { // Part of the public interface of MathicGB
  /// Code in this namespace is not part of the public interface of MathicGB.
  /// If you take a dependency on code in this namespace, except indirectly
  /// through using code in the mgb namespace, then you are not using the
  /// library interface as intended.
  namespace mgbi { // Not part of the public interface of MathicGB
    class PimplOf;
  }

  /// Sets time to the number of seconds accumulated on the internal
  /// MathicGB log named logName. Returns true if the logName log was
  /// found and false otherwise.
  ///
  /// The available logs and what they measure are not part of
  /// the public interface of MathicGB and indeed the availability of a log
  /// depends on both compile-time and run-time events. Therefore you must
  /// ensure that your program works even if this function always returns
  /// false.
  bool logTime(const char* logName, double& time);

  /// As logTime, but retrieves a number associated to logName that is
  /// not necessarily a time.
  bool logNumber(const char* logName, double& number);

  /// Use this class to describe a configuration of a Groebner basis algorithm
  /// that you want to run.
  ///
  /// If you came here to compute the Groebner basis of an ideal in a
  /// polynomial ring and you don't want to deal with modules: Don't worry
  /// about it. A module with one component over a polynomial ring is the
  /// same thing as that ring. Simply set the componentCount to 1. Then all
  /// (module) monomials will have component 0 and you can just ignore that.
  /// The internal implementation has a special case for this case you will
  /// not pay an overhead for this other than passing a few 0 components
  /// through the interface.
  ///
  /// @todo: expose more of the available functionality.
  class GroebnerConfiguration {
  public:
    // Type for the coefficient of a term. 2*x is a term with coefficient 2.
    typedef unsigned int Coefficient;

    /// Type to specify a variable in the polynomial ring. If the variables
    /// are x, y, z in that order, then x has index 0, y has index 1 and z
    /// has index 2.
    typedef size_t VarIndex;

    /// Type for the exponent of a variable. If x is a variable, then
    /// x*x = x^2 has exponent 2.
    typedef int Exponent;

    /// Type for the component of a module monomial. The module monomial
    /// x*y*z * e_i has component i.
    typedef unsigned int Component;

    /// A configuration in a module over a polynomial ring with varCount
    /// variables and the coefficients are from the finite field with
    /// modulus elements. modulus must be a prime. The module has the basis
    /// e_0, ..., e_k where k is componentCount - 1.
    GroebnerConfiguration(
      Coefficient modulus,
      VarIndex varCount,
      Component comCount
    );

    GroebnerConfiguration(const GroebnerConfiguration& conf);
    ~GroebnerConfiguration();

    Coefficient modulus() const;
    VarIndex varCount() const;
    Component comCount() const;

    enum BaseOrder {
      /// Reverse lexicographic order with x_1 > x_2 > ... > x_n.
      /// Can be described as rev-lex-descending or rev-lex-from-right.
      /// This is what people usually mean when they say rev-lex.
      RevLexDescendingBaseOrder = 0,

      /// Lexicographic order with x_1 > x_2 > ... > x_n.
      /// Can be described as lex-descending or lex-from-left.
      /// This is what people usually mean when they say lex.
      LexDescendingBaseOrder = 1,

      /// Reverse lexicographic order with x_1 < x_2 < ... < x_n.
      /// Can be described as rev-lex-ascending or rev-lex-from-left.
      RevLexAscendingBaseOrder = 2,

      /// Lexicographic order with x_1 < x_2 < ... < x_n.
      /// Can be described as lex-ascending or lex-from-right.
      LexAscendingBaseOrder = 3
    };

    /// Returns a name for the passed in base order.
    /// Ownership of the string is not passed on. You should not depend on
    /// the string having any particular value, except that it is something
    /// that will identify the order to a human.
    static const char* baseOrderName(BaseOrder order);

    /// Specifies the monomial order to compute a Groebner basis with
    /// respect to. You must ensure that the order that you are specifying
    /// is in fact a monomial order.
    ///
    /// The specified monomial order has two parts - a set of gradings and
    /// a base order. The base order is used to break ties for monomials with
    /// identical grades.
    ///
    /// The gradings parameter represents a matrix where each row of the matrix
    /// defines a grading. The matrix is represented in row-major order.
    /// The matrix has varCount() columns so gradings.size() must be a multiple
    /// of varCount().
    ///
    /// Suppose gradings has one row U and that x^a and x^b are two monomials
    /// with exponent vectors a and b respectively. Then a < b if a*U < b*U
    /// where * is dot product. If there are several rows in gradings, then
    /// the first row U is considered first. If a*U=b*U then the second row
    /// is considered and so on. If a and b have the same degree with respect
    /// to all the rows of the matrix, then the base order is used to break the
    /// tie.
    ///
    /// An order is global if 1 is the smallest of all monomials. Equivalently,
    /// if 1 < x for each variable x in the ambient ring. In MathicGB only
    /// global orders are considered monomial orders and non-global orders
    /// are not supported. setMonomialOrder will return true if the specified
    /// order is global. Otherwise, setMonomialOrder returns false and the
    /// requested order is NOT set. So you can ignore the return value if
    /// and only if you are certain that the order you are requesting is in
    /// fact global. For example, ungraded reverse lex is not a (global) monomial
    /// order.
    ///
    /// Each row of the matrix adds overhead to the Groebner basis
    /// computation both in terms of time and space.
    ///
    /// The default grading is (1, ..., 1)-graded reverse lex.
    bool setMonomialOrder(
      BaseOrder order,
      const std::vector<Exponent>& gradings
    );
    std::pair<BaseOrder, std::vector<Exponent> > monomialOrder() const;

    static const size_t ComponentAfterBaseOrder = static_cast<size_t>(-1);

    /// Sets the module monomial order. This order extends the
    /// monomial order in the sense that a<b <=> aM<bM for a,b
    /// monomials and M a module monomial. So if you want to change
    /// the matrix of the comparison, change the monomial order instead.
    ///
    /// componentBefore specifies at what point to compare the
    /// components of two module monomials. If componentBefore == 0
    /// then the component is considered before anything else. Let R
    /// be the number of rows in the grading matrix. If
    /// componentBefore < R, then the component is considered before the
    /// grading with index componentBefore and after the grading with index
    /// componentBefore - 1. If componentBefore == R, then the
    /// component is considered after all gradings and before the base
    /// order. If componentBefore == ComponentAfterBaseOrder, then the
    /// component is considered after everything else.
    ///
    /// If componentBefore > R and componentBefore !=
    /// ComponentAfterBaseOrder, then that is an invalid value and you
    /// will experience undefined behavior. This is only checked at a
    /// later stage, so there is no problem in setting a value that
    /// was invalid at the time but that becomes valid later, either
    /// because you reset it to something valid or because you change the
    /// matrix.
    ///
    /// Setting this value to anything other than
    /// ComponentAfterBaseOrder incurs overhead similar to adding a
    /// row to the comparison matrix.
    ///
    /// The default value is ComponentAfterBaseOrder.
    void setComponentBefore(size_t value);
    VarIndex componentBefore() const;

    /// This setting modifies the module monomial order.
    /// If componentsAscending is true then a comparison of components
    /// is done such that a module monomial with greater component is
    /// considered greater once we get the point where components are
    /// compared. So when not using the Schreyer setting, the impact is:
    ///
    ///   true value: e_0 < e_1 < ... < e_n
    ///  false value: e_n < ... < e_1 < e_0.
    ///
    /// The default value is true. Either setting is implemented with a
    /// pre-processing step, so there is little-to-no overhead for it.
    void setComponentsAscending(bool value);
    bool componentsAscending() const;

    /// This setting modifies the module monomial order.
    /// We are Schreyering if we are using an ordering <' that is
    /// derived from the usual module mononial order < in the
    /// following way. Let c_i be the leading monomial of the input
    /// basis element with index i. Then
    ///
    ///   ae_i <' be_i   if and only if   ac_ie_i < bc_je_j.
    ///
    /// The default value is true. Either setting is implemented with a
    /// pre-processing step, so there is little-to-no overhead.
    ///
    /// A possible future extension would be to allow setting the c_i
    /// to be something other than leading monomials. This would be useful
    /// for the higher levels in computation of resolutions. This
    /// functionality is not currently available.
    void setSchreyering(bool value);
    bool schreyering() const;

    enum Reducer {
      DefaultReducer = 0, /// Let the library decide for itself.
      ClassicReducer = 1, /// The classic polynomial division algorithm.
      MatrixReducer = 2 /// use linear algebra as in F4.
    };

    /// Specify the way that polynoials are reduced.
    void setReducer(Reducer reducer);
    Reducer reducer() const;

    /// Sets the maximum number of S-pairs to reduce at one time. This is
    /// mainly useful as a (weak) control on memory usage for F4 reducers.
    /// A value of 0 indicates to let the library decide this value for
    /// itself, which is also the default and highly recommended value.
    ///
    /// For matrix-based reducers, use a high value. For serial classic
    /// reduction, use a low value, preferably 1. Setting the value to
    /// 0 already takes care of this.
    void setMaxSPairGroupSize(unsigned int size);
    unsigned int maxSPairGroupSize() const;

    /// Sets the maximum number of threads to use. May use fewer threads.
    /// A value of 0 indicates to let the library decide this value for
    /// itself, which is also the default value.
    void setMaxThreadCount(unsigned int maxThreadCount);
    unsigned int maxThreadCount() const;

    /// Sets logging to occur according to the string. The format of the
    /// string is the same as for the -logs command line parameter.
    /// Ownership of the string is not taken over.
    /// @todo: describe the format in more detail.
    void setLogging(const char* logging);
    const char* logging() const;

    /// Class used for setCallback().
    class Callback {
    public:
      enum Action {
        ContinueAction = 0,
        StopWithNoOutputAction = 1,
        StopWithPartialOutputAction = 2
      };
      virtual Action call() = 0;
    };

    /// Set callback to be called at various unspecified times during
    /// the computation. Callback has the ability to stop or continue
    /// the computation based on its return value. If callback is null
    /// then no function will be called.
    void setCallback(Callback* callback);
    Callback* callback();
    const Callback* callback() const;

  private:
    friend class mgbi::PimplOf;

    void operator=(const GroebnerConfiguration&); // not available
    bool operator==(const GroebnerConfiguration&); // not available

    struct MonomialOrderData {
      BaseOrder baseOrder;
      const Exponent* gradings;
      size_t gradingsSize;
    };
    bool setMonomialOrderInternal(MonomialOrderData order);
    MonomialOrderData monomialOrderInternal() const;

    static Callback::Action callbackCaller(void* obj);
    void setCallbackInternal(void* data, Callback::Action (*func) (void*));
    void* callbackDataInternal() const;

    struct Pimpl;
    Pimpl* const mPimpl;
  };

  /// After making a configuration, use this class to communicate a basis
  /// of the input ideal that you want to run a Groebner basis algorithm on.
  class GroebnerInputIdealStream {
  public:
    GroebnerInputIdealStream(const GroebnerConfiguration& conf);
    ~GroebnerInputIdealStream();

    typedef GroebnerConfiguration::Coefficient Coefficient;
    typedef GroebnerConfiguration::VarIndex VarIndex;
    typedef GroebnerConfiguration::Exponent Exponent;
    typedef GroebnerConfiguration::Component Component;

    const GroebnerConfiguration& configuration() const;
    Coefficient modulus() const;
    VarIndex varCount() const;
    Component comCount() const;

    void idealBegin();
    void idealBegin(size_t polyCount);
    void appendPolynomialBegin();
    void appendPolynomialBegin(size_t termCount);

    /// Signals the beginning of communication of a module term of the
    /// current module element.
    void appendTermBegin(Component com);

    /// The sequence of indices appended to a term must be in strictly
    /// ascending order.
    void appendExponent(VarIndex index, Exponent exponent);
    void appendTermDone(Coefficient coefficient);
    void appendPolynomialDone();
    void idealDone();

  private:
    bool debugAssertValid() const;
    Exponent* const mExponents;

    struct Pimpl;
    friend class mgbi::PimplOf;
    Pimpl* const mPimpl;
  };

  /// After making a configuration and an ideal, use this function to compute
  /// a Groebner basis. The output basis is constructed on output, which must
  /// resemble GroebnerInputIdealStream by having the following functions.
  ///
  ///   - modulus() const;
  ///   - varCount() const;
  ///   - idealBegin(size_t polyCount);
  ///   - void appendPolynomialBegin(size_t termCount);
  ///   - void appendTermBegin(Component com);
  ///   - void appendExponent(VarIndex index, Exponent exponent);
  ///   - void appendTermDone(Coefficient coefficient);
  ///   - void appendPolynomialDone();
  ///   - void idealDone();
  ///
  /// ** Example
  ///
  /// This example uses a default configuration, constructs an ideal and then
  /// outputs the Groebner basis to a NullIdealStream which does not do
  /// anything with the output. However, we wrap the NullIdealStream in a
  /// IdealStreamLog, which prints out the method calls done on the stream
  /// to std::cerr. We also wrap the GroebnerInputIdealStream in a
  /// IdealStreamChecker which checks that we are correctly following the
  /// protocol of GroebnerInputIdealStream - that's only recommended when
  /// debugging as it is slow.
  ///
  /// GroebnerConfiguration configuration(101, 4); // mod 101, 4 variables
  /// GroebnerInputIdealStream input(configuration);
  /// IdealStreamChecker<GroebnerInputIdealStream> checked(input);
  /// checked.idealBegin(2); // describe ideal with 2 basis elements
  ///   checked.appendPolynomial(2); // describe generator with 2 terms
  ///     checked.appendTermBegin();
  ///       checked.appendExponent(0, 40); // x0^40
  ///     checked.appendTermDone(3); // 3 * x0^40
  ///     checked.appendTermBegin();
  ///       checked.appendExponent(1, 5); // x1^5
  ///       checked.appendExponent(2, 7); // x2^7
  ///     checked.appendTermDone(11); // 11 * x1^5 * x2^7
  ///   checked.appendPolynomialDone(); // 3 * x0^40 + 11 * x1^5 * x2^7
  ///   checked.appendPolynomialBegin(1);
  ///     checked.appendTermBegin();
  ///     checked.appendTermDone(13); // 13
  ///   checked.appendPolynomialDone(); // 13
  /// checked.idealDone(); // the generators are 3*x0^40 + 11*x1^5*x2^7 and 13
  /// NullIdealStream nullStream;
  /// IdealStreamLog<NullIdealStream> logStream(nullStream, std::cerr);
  /// computeGroebnerBasis(input, logStream);
  ///
  /// The ideal constructed on the passed-in GroebnerInputIdealStream will
  /// be cleared. If you need it again for something else, you will have
  /// to re-construct it.
  template<class OutputStream>
  void computeGroebnerBasis(
    GroebnerInputIdealStream& inputWhichWillBeCleared,
    OutputStream& output
  );

  class NullIdealStream;

  /// Passes on all method calls to an inner ideal stream while printing out
  /// what methods get called to an std::ostream.
  template<class Stream = NullIdealStream>
  class IdealStreamLog {
  public:
    typedef GroebnerConfiguration::Coefficient Coefficient;
    typedef GroebnerConfiguration::VarIndex VarIndex;
    typedef GroebnerConfiguration::Exponent Exponent;
    typedef GroebnerConfiguration::Component Component;

    /// All calls are written to log and then passed on to stream.
    IdealStreamLog(std::ostream& log, Stream& stream);

    /// All calls are written to log.
    IdealStreamLog(
      std::ostream& log,
      Coefficient modulus,
      VarIndex varCount,
      Component comCount
    );

    ~IdealStreamLog();

    Coefficient modulus() const;
    VarIndex varCount() const;
    Component comCount() const;

    void idealBegin();
    void idealBegin(size_t polyCount);
    void appendPolynomialBegin();
    void appendPolynomialBegin(size_t termCount);
    void appendTermBegin(Component com);
    void appendExponent(VarIndex index, Exponent exponent);
    void appendTermDone(Coefficient coefficient);
    void appendPolynomialDone();
    void idealDone();

  private:
    const Coefficient mModulus;
    const VarIndex mVarCount;
    const Component mComCount;
    Stream* const mStream;
    std::ostream& mLog;
  };

  /// An ideal stream that simply ignores all the method calls it receives.
  /// Can be handy in combination with IdealStreamLog or as a temporary
  /// stand-in if you have not yet written your own ideal stream.
  class NullIdealStream {
  public:
    typedef GroebnerConfiguration::Coefficient Coefficient;
    typedef GroebnerConfiguration::VarIndex VarIndex;
    typedef GroebnerConfiguration::Exponent Exponent;
    typedef GroebnerConfiguration::Component Component;

    NullIdealStream(
      Coefficient modulus,
      VarIndex varCount,
      Component comCount
    );

    Coefficient modulus() const {return mModulus;}
    VarIndex varCount() const {return mVarCount;}
    Component comCount() const {return mComCount;}

    void idealBegin() {}
    void idealBegin(size_t polyCount) {}
    void appendPolynomialBegin() {}
    void appendPolynomialBegin(size_t termCount) {}
    void appendTermBegin(Component com) {}
    void appendExponent(VarIndex index, Exponent exponent) {}
    void appendTermDone(Coefficient coefficient) {}
    void appendPolynomialDone() {}
    void idealDone() {}

  private:
    const Coefficient mModulus;
    const VarIndex mVarCount;
    const Component mComCount;
  };

  template<class OutputStream>
  void streamSimpleIdeal(OutputStream& output);

  namespace mgbi { // Not part of the public interface of MathicGB
    /// Class that checks to see if the protocol for an ideal stream is followed.
    /// A method will return false if that is not the case. This class is not
    /// itself an ideal stream - it is intended to be used with ideal streams for
    /// debugging.
    class StreamStateChecker {
    public:
      typedef GroebnerConfiguration::Coefficient Coefficient;
      typedef GroebnerConfiguration::VarIndex VarIndex;
      typedef GroebnerConfiguration::Exponent Exponent;
      typedef GroebnerConfiguration::Component Component;

      StreamStateChecker(
        const Coefficient modulus,
        const VarIndex varCount,
        const Component comCount
      );
      ~StreamStateChecker();

      void idealBegin();
      void idealBegin(size_t polyCount);
      void appendPolynomialBegin();
      void appendPolynomialBegin(size_t termCount);
      void appendTermBegin(Component com);
      void appendExponent(VarIndex index, Exponent exponent);
      void appendTermDone(Coefficient coefficient);
      void appendPolynomialDone();
      void idealDone();

      bool hasIdeal() const;

    private:
      struct Pimpl;
      Pimpl* const mPimpl;
    };
  }

  /// Use this class to check that you are following the correct protocol
  /// for calling methods on an ideal stream. This has significant overhead
  /// so it is not recommended for production use. If you have built the
  /// MathicGB library in debug mode then this is already automatically
  /// used for GroebnerInputIdealStream.
  template<class Stream>
  class IdealStreamChecker {
  public:
    typedef GroebnerConfiguration::Coefficient Coefficient;
    typedef GroebnerConfiguration::VarIndex VarIndex;
    typedef GroebnerConfiguration::Exponent Exponent;
    typedef GroebnerConfiguration::Component Component;

    IdealStreamChecker(Stream& stream);

    Coefficient modulus() const;
    VarIndex varCount() const;
    Component comCount() const;

    void idealBegin();
    void idealBegin(size_t polyCount);
    void appendPolynomialBegin();
    void appendPolynomialBegin(size_t termCount);
    void appendTermBegin(Component com);
    void appendExponent(VarIndex index, Exponent exponent);
    void appendTermDone(Coefficient coefficient);
    void appendPolynomialDone();
    void idealDone();

  private:
    Stream& mStream;
    mgbi::StreamStateChecker mChecker;
  };
}

// ********************************************************
// Nothing below this line is part of the public interface of MathicGB.

#ifdef MATHICGB_DEBUG
#include <cassert>
#endif

namespace mgb {
  // ** Functions

  // This method is made inline to avoid the overhead from calling a function
  // for every exponent. This is also why mExponents is not inside the pimpl -
  // otherwise we couldn't access it from here. That then explains why
  // mExponents is a raw pointer instead of a std::vector - the compiler for the
  // caller and the library must agree on the memory layout of the object and
  // that is less likely to introduce problems for a raw pointer than for a
  // std::vector. In particular, doing it this way allows the library and
  // the caller to use different implementations of the STL.
  inline void GroebnerInputIdealStream::appendExponent(
    const VarIndex index,
    const Exponent exponent
  ) {
#ifdef MATHICGB_DEBUG
    assert(index < varCount());
#endif
    mExponents[index] = exponent;
  }

  // ** Implementation of class GroebnerConfiguration
  // This code is inline so that things will still work even if
  // the caller uses a different implementation of std::vector than
  // the library does internally. So we have to decay objects of
  // type std::vector to pointers.

  inline bool GroebnerConfiguration::setMonomialOrder(
    const BaseOrder baseOrder,
    const std::vector<Exponent>& gradings
  ) {
    // We cannot do gradings.data() since we may be compiling without C++11
    // support. We also cannot do &*gradings.begin() if gradings is empty
    // since then we are dereferencing an invalid iterator - the debug build
    // of MSVC's STL will correctly flag this as an error.
    const MonomialOrderData data = {
      baseOrder,
      gradings.empty() ? static_cast<Exponent*>(0) : &*gradings.begin(),
      gradings.size()
    };
    return setMonomialOrderInternal(data);
  }

  inline std::pair<
    GroebnerConfiguration::BaseOrder,
    std::vector<GroebnerConfiguration::Exponent>
  > GroebnerConfiguration::monomialOrder() const {
    const MonomialOrderData data = monomialOrderInternal();
    return std::make_pair(
      data.baseOrder,
      std::vector<Exponent>(data.gradings, data.gradings + data.gradingsSize)
    );
  }

  inline GroebnerConfiguration::Callback::Action
  GroebnerConfiguration::callbackCaller(void* obj) {
    return static_cast<Callback*>(obj)->call();
  };

  inline void GroebnerConfiguration::setCallback(Callback* callback) {
    setCallbackInternal(static_cast<void*>(callback), callbackCaller);
  }

  inline const GroebnerConfiguration::Callback*
  GroebnerConfiguration::callback() const {
    return const_cast<GroebnerConfiguration&>(*this).callback();
  }

  inline GroebnerConfiguration::Callback*
  GroebnerConfiguration::callback() {
    return static_cast<Callback*>(callbackDataInternal());
  }

  // ** Implementation of the class IdealStreamLog
  // This class has to be inline as it is a template.

  template<class Stream> 
  IdealStreamLog<Stream>::IdealStreamLog(std::ostream& log, Stream& stream):
    mModulus(stream.modulus()),
    mVarCount(stream.varCount()),
    mComCount(stream.comCount()),
    mStream(&stream),
    mLog(log)
  {
    mLog << "IdealStreamLog s(stream, log); // modulus=" << mModulus
      << ", varCount=" << mVarCount
      << ", comCount=" << mComCount << '\n';
  }

  template<class Stream> 
  IdealStreamLog<Stream>::IdealStreamLog(
    std::ostream& log,
    Coefficient modulus,
    VarIndex varCount,
    Component comCount
  ):
    mModulus(modulus),
    mVarCount(varCount),
    mComCount(comCount),
    mStream(0),
    mLog(log)
  {
    mLog
      << "IdealStreamLog s(stream, "
      << mModulus << ", "
      << mVarCount << ", "
      << mComCount << ");\n";
  }

  template<class Stream> 
  IdealStreamLog<Stream>::~IdealStreamLog() {
    mLog << "// s.~IdealStreamLog();\n";
  }

  template<class Stream> 
  typename IdealStreamLog<Stream>::Coefficient
  IdealStreamLog<Stream>::modulus() const {
    return mModulus;
  }

  template<class Stream> 
  typename IdealStreamLog<Stream>::VarIndex
  IdealStreamLog<Stream>::varCount() const {
    return mVarCount;
  }

  template<class Stream> 
  typename IdealStreamLog<Stream>::Component
  IdealStreamLog<Stream>::comCount() const {
    return mComCount;
  }

  template<class Stream>
  void IdealStreamLog<Stream>::idealBegin() {
    mLog << "s.idealBegin();\n";
    if (mStream != 0)
      mStream->idealBegin();
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::idealBegin(size_t polyCount) {
    mLog << "s.idealBegin(" << polyCount << "); // polyCount\n";
    if (mStream != 0)
      mStream->idealBegin(polyCount);
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendPolynomialBegin() {
    mLog << "s.appendPolynomialBegin();\n";
    if (mStream != 0)
      mStream->appendPolynomialBegin();
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendPolynomialBegin(size_t termCount) {
    mLog << "s.appendPolynomialBegin(" << termCount << ");\n";
    if (mStream != 0)
      mStream->appendPolynomialBegin(termCount);
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendTermBegin(const Component com) {
    mLog << "s.appendTermBegin(" << com << ");\n";
    if (mStream != 0)
      mStream->appendTermBegin(com);
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendExponent(VarIndex index, Exponent exponent) {
    mLog << "s.appendExponent(" << index << ", " << exponent <<
      "); // index, exponent\n";
    if (mStream != 0)
      mStream->appendExponent(index, exponent);
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendTermDone(Coefficient coefficient) {
    mLog << "s.appendTermDone(" << coefficient << "); // coefficient\n";
    if (mStream != 0)
      mStream->appendTermDone(coefficient);
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::appendPolynomialDone() {
    mLog << "s.appendPolynomialDone();\n";
    if (mStream != 0)
      mStream->appendPolynomialDone();
  }

  template<class Stream> 
  void IdealStreamLog<Stream>::idealDone() {
    mLog << "s.idealDone();\n";
    if (mStream != 0)
      mStream->idealDone();
  }


  // ** Implementation of the class IdealStreamChecker
  // This class has to be inline as it is a template.

  template<class Stream>
  IdealStreamChecker<Stream>::IdealStreamChecker(Stream& stream):
    mStream(stream),
    mChecker(stream.modulus(), stream.varCount(), stream.comCount())
  {}

  template<class Stream>
  typename IdealStreamChecker<Stream>::Coefficient
  IdealStreamChecker<Stream>::modulus() const {
    return mStream.modulus();
  }

  template<class Stream>
  typename IdealStreamChecker<Stream>::VarIndex
  IdealStreamChecker<Stream>::varCount() const {
    return mStream.varCount();
  }

  template<class Stream>
  typename IdealStreamChecker<Stream>::Component
  IdealStreamChecker<Stream>::comCount() const {
    return mStream.comCount();
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::idealBegin() {
    mChecker.idealBegin();
    mStream.idealBegin();
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::idealBegin(size_t polyCount) {
    mChecker.idealBegin(polyCount);
    mStream.idealBegin(polyCount);
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendPolynomialBegin() {
    mChecker.appendPolynomialBegin();
    mStream.appendPolynomialBegin();
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendPolynomialBegin(size_t termCount) {
    mChecker.appendPolynomialBegin(termCount);
    mStream.appendPolynomialBegin(termCount);
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendTermBegin(const Component com) {
    mChecker.appendTermBegin(com);
    mStream.appendTermBegin(com);
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendExponent(VarIndex index, Exponent exponent) {
    mChecker.appendExponent(index, exponent);
    mStream.appendExponent(index, exponent);
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendTermDone(Coefficient coefficient) {
    mChecker.appendTermDone(coefficient);
    mStream.appendTermDone(coefficient);
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::appendPolynomialDone() {
    mChecker.appendPolynomialDone();
    mStream.appendPolynomialDone();
  }

  template<class Stream>
  void IdealStreamChecker<Stream>::idealDone() {
    mChecker.idealDone();
    mStream.idealDone();
  }

  // ** Implementation of the class NullIdealStream
  // This class isn't a template, but it might become one and it is so
  // trivial that making it inline is not a big deal - it's not much more
  // than just its interface. The idea is also for this class to have minimal
  // overhead and making it inline helps with that.

  inline NullIdealStream::NullIdealStream(
    Coefficient modulus,
    VarIndex varCount,
    Component comCount
  ):
    mModulus(modulus),
    mVarCount(varCount),
    mComCount(comCount)
  {}

  namespace mgbi {
    /// Used to read an internal MathicGB ideal without exposing the type of
    /// the ideal.
    class IdealAdapter {
    public:
      typedef GroebnerConfiguration::Coefficient Coefficient;
      typedef GroebnerConfiguration::VarIndex VarIndex;
      typedef GroebnerConfiguration::Exponent Exponent;
      typedef GroebnerConfiguration::Component Component;
      typedef size_t PolyIndex;
      typedef size_t TermIndex;

      struct ConstTerm {
        Coefficient coef;
        const Exponent* exponents;
        Component com;
      };

      IdealAdapter();
      ~IdealAdapter();

      VarIndex varCount() const;
      size_t polyCount() const;
      size_t termCount(PolyIndex poly) const;
      Component componentCount() const;

      /// Sets the internal position to the first term of the first polynomial.
      void toFirstTerm();

      /// Returns the next term. First all terms of polynomial 0 are returned,
      /// then all terms of the next polynomial and so on.
      ConstTerm nextTerm() const;

    private:
      friend class mgbi::PimplOf;
      struct Pimpl;
      Pimpl* mPimpl;
    };

    bool internalComputeGroebnerBasis(
      GroebnerInputIdealStream& inputWhichWillBeCleared,
      IdealAdapter& output
    );
  }

  template<class OutputStream>
  void computeGroebnerBasis(
    GroebnerInputIdealStream& inputWhichWillBeCleared,
    OutputStream& output
  ) {
    typedef mgbi::IdealAdapter::ConstTerm ConstTerm;
    mgbi::IdealAdapter ideal;
    const bool doOutput =
      mgbi::internalComputeGroebnerBasis(inputWhichWillBeCleared, ideal);
    if (!doOutput)
      return;

    ideal.toFirstTerm();
    const size_t varCount = ideal.varCount();
    const size_t polyCount = ideal.polyCount();
    output.idealBegin(polyCount);
    for (size_t polyIndex = 0; polyIndex < polyCount; ++polyIndex) {
      const size_t termCount = ideal.termCount(polyIndex);
      output.appendPolynomialBegin(termCount);
      for (size_t termIndex = 0; termIndex < termCount; ++termIndex) {
        const ConstTerm term = ideal.nextTerm();
        output.appendTermBegin(term.com);
        for (size_t var = 0; var < varCount; ++var)
          output.appendExponent(var, term.exponents[var]);
        output.appendTermDone(term.coef);
      }
      output.appendPolynomialDone();
    }
    output.idealDone();
  }
}

#endif