/usr/include/mgl2/data.h is in libmgl-dev 2.3.4-1.1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | /***************************************************************************
* data.h is part of Math Graphic Library
* Copyright (C) 2007-2014 Alexey Balakin <mathgl.abalakin@gmail.ru> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Library General Public License as *
* published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _MGL_DATA_H_
#define _MGL_DATA_H_
#include "mgl2/data_cf.h"
#include "mgl2/pde.h"
//-----------------------------------------------------------------------------
#include <vector>
#include <string>
#include <stdarg.h>
//-----------------------------------------------------------------------------
mreal MGL_EXPORT mglLinear(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
mreal MGL_EXPORT mglSpline3(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z,mreal *dx=0, mreal *dy=0, mreal *dz=0);
mreal MGL_EXPORT mglSpline3s(const mreal *a, long nx, long ny, long nz, mreal x, mreal y, mreal z);
std::string MGL_EXPORT mgl_data_to_string(HCDT d, long ns);
//-----------------------------------------------------------------------------
/// Class for working with data array
class MGL_EXPORT mglData : public mglDataA
{
public:
using mglDataA::Momentum;
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
mreal *a; ///< data array
std::string id; ///< column (or slice) names
bool link; ///< use external data (i.e. don't free it)
/// Initiate by other mglData variable
mglData(const mglData &d) { a=0; mgl_data_set(this,&d); } // NOTE: must be constructor for mglData& to exclude copy one
#if MGL_HAVE_RVAL
mglData(mglData &&d):nx(d.nx),ny(d.ny),nz(d.nz),a(d.a),id(d.id),link(d.link)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.a=0; d.func=0; }
#endif
mglData(const mglDataA *d)
{ a=0; if(d) mgl_data_set(this, d); else mgl_data_create(this,1,1,1); }
mglData(bool, mglData *d) // NOTE: Variable d will be deleted!!!
{ if(d)
{ nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=0;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; delete d; }
else { a=0; Create(1); } }
/// Initiate by flat array
mglData(int size, const float *d) { a=0; Set(d,size); }
mglData(int rows, int cols, const float *d) { a=0; Set(d,cols,rows); }
mglData(int size, const double *d) { a=0; Set(d,size); }
mglData(int rows, int cols, const double *d) { a=0; Set(d,cols,rows); }
mglData(const double *d, int size) { a=0; Set(d,size); }
mglData(const double *d, int rows, int cols) { a=0; Set(d,cols,rows); }
mglData(const float *d, int size) { a=0; Set(d,size); }
mglData(const float *d, int rows, int cols) { a=0; Set(d,cols,rows); }
/// Allocate memory and copy data from std::vector<T>
mglData(const std::vector<int> &d) { a=0; Set(d); }
mglData(const std::vector<float> &d) { a=0; Set(d); }
mglData(const std::vector<double> &d) { a=0; Set(d); }
/// Read data from file
mglData(const char *fname) { a=0; Read(fname); }
/// Allocate the memory for data array and initialize it zero
mglData(long xx=1,long yy=1,long zz=1) { a=0; Create(xx,yy,zz); }
/// Delete the array
virtual ~mglData() { if(!link && a) delete []a; }
/// Move all data from variable d, and delete this variable.
inline void Move(mglData *d) // NOTE: Variable d will be deleted!!!
{ if(d && d->GetNN()>1)
{ bool l=link; mreal *b=a;
nx=d->nx; ny=d->ny; nz=d->nz; a=d->a; d->a=b;
temp=d->temp; func=d->func; o=d->o; s=d->s;
id=d->id; link=d->link; d->link=l; delete d; }
else if(d) { *this = d->a[0]; delete d; }
}
inline mreal GetVal(long i, long j=0, long k=0) const
{ return mgl_data_get_value(this,i,j,k);}
inline void SetVal(mreal f, long i, long j=0, long k=0)
{ mgl_data_set_value(this,f,i,j,k); }
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Link external data array (don't delete it at exit)
inline void Link(mreal *A, long NX, long NY=1, long NZ=1)
{ mgl_data_link(this,A,NX,NY,NZ); }
inline void Link(mglData &d) { Link(d.a,d.nx,d.ny,d.nz); }
/// Allocate memory and copy the data from the gsl_vector
inline void Set(gsl_vector *m) { mgl_data_set_vector(this,m); }
/// Allocate memory and copy the data from the gsl_matrix
inline void Set(gsl_matrix *m) { mgl_data_set_matrix(this,m); }
/// Allocate memory and copy the data from the (float *) array
inline void Set(const float *A,long NX,long NY=1,long NZ=1)
{ mgl_data_set_float(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (double *) array
inline void Set(const double *A,long NX,long NY=1,long NZ=1)
{ mgl_data_set_double(this,A,NX,NY,NZ); }
/// Allocate memory and copy the data from the (float **) array
inline void Set(float const * const *A,long N1,long N2)
{ mgl_data_set_float2(this,A,N1,N2); }
/// Allocate memory and copy the data from the (double **) array
inline void Set(double const * const *A,long N1,long N2)
{ mgl_data_set_double2(this,A,N1,N2); }
/// Allocate memory and copy the data from the (float ***) array
inline void Set(float const * const * const *A,long N1,long N2,long N3)
{ mgl_data_set_float3(this,A,N1,N2,N3); }
/// Allocate memory and copy the data from the (double ***) array
inline void Set(double const * const * const *A,long N1,long N2,long N3)
{ mgl_data_set_double3(this,A,N1,N2,N3); }
/// Allocate memory and scanf the data from the string
inline void Set(const char *str,long NX,long NY=1,long NZ=1)
{ mgl_data_set_values(this,str,NX,NY,NZ); }
/// Import data from abstract type
inline void Set(HCDT dat) { mgl_data_set(this, dat); }
inline void Set(const mglDataA &dat) { mgl_data_set(this, &dat); }
/// Allocate memory and copy data from std::vector<T>
inline void Set(const std::vector<int> &d)
{ if(d.size()>0) { Create(d.size()); for(long i=0;i<nx;i++) a[i] = d[i]; }
else Create(1); }
inline void Set(const std::vector<float> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
inline void Set(const std::vector<double> &d)
{ if(d.size()>0) Set(&(a[0]),d.size()); else Create(1); }
/// Allocate memory and set data from variable argument list of double values
inline void SetList(long n, ...)
{
if(n<1) return;
mgl_data_create(this,n,1,1);
va_list vl; va_start(vl,n);
for(long i=0;i<n;i++) a[i] = va_arg(vl,double);
}
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ mgl_data_create(this,mx,my,mz); }
/// Rearange data dimensions
inline void Rearrange(long mx, long my=0, long mz=0)
{ mgl_data_rearrange(this,mx,my,mz); }
/// Transpose dimensions of the data (generalization of Transpose)
inline void Transpose(const char *dim="yx")
{ mgl_data_transpose(this,dim); }
/// Extend data dimensions
inline void Extend(long n1, long n2=0)
{ mgl_data_extend(this,n1,n2); }
/// Reduce size of the data
inline void Squeeze(long rx,long ry=1,long rz=1,bool smooth=false)
{ mgl_data_squeeze(this,rx,ry,rz,smooth); }
/// Crop the data
inline void Crop(long n1, long n2,char dir='x')
{ mgl_data_crop(this,n1,n2,dir); }
/// Insert data rows/columns/slices
inline void Insert(char dir, long at=0, long num=1)
{ mgl_data_insert(this,dir,at,num); }
/// Delete data rows/columns/slices
inline void Delete(char dir, long at=0, long num=1)
{ mgl_data_delete(this,dir,at,num); }
/// Remove rows with duplicate values in column id
inline void Clean(long id)
{ mgl_data_clean(this,id); }
/// Join with another data array
inline void Join(const mglDataA &d)
{ mgl_data_join(this,&d); }
/// Modify the data by specified formula
inline void Modify(const char *eq,long dim=0)
{ mgl_data_modify(this, eq, dim); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat, const mglDataA &wdat)
{ mgl_data_modify_vw(this,eq,&vdat,&wdat); }
/// Modify the data by specified formula
inline void Modify(const char *eq,const mglDataA &vdat)
{ mgl_data_modify_vw(this,eq,&vdat,0); }
/// Modify the data by specified formula assuming x,y,z in range [r1,r2]
inline void Fill(HMGL gr, const char *eq, const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,0,0,opt); }
inline void Fill(HMGL gr, const char *eq, const mglDataA &vdat, const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,&vdat,0,opt); }
inline void Fill(HMGL gr, const char *eq, const mglDataA &vdat, const mglDataA &wdat,const char *opt="")
{ mgl_data_fill_eq(gr,this,eq,&vdat,&wdat,opt); }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Fill(mreal x1,mreal x2=mglNaN,char dir='x')
{ mgl_data_fill(this,x1,x2,dir); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2] using global spline
inline void RefillGS(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_data_refill_gs(this,&xdat,&vdat,x1,x2,sl); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in range [p1,p2]
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mreal x1, mreal x2,long sl=-1)
{ mgl_data_refill_x(this,&xdat,&vdat,x1,x2,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_data_refill_x(this,&xdat,&vdat,p1.x,p2.x,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2,long sl=-1)
{ mgl_data_refill_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y,sl); }
inline void Refill(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
{ mgl_data_refill_xyz(this,&xdat,&ydat,&zdat,&vdat,p1.x,p2.x,p1.y,p2.y,p1.z,p2.z); }
/// Fill the data by interpolated values of vdat parametrically depended on xdat,ydat,zdat for x,y,z in axis range of gr
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,0,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, long sl=-1, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,&ydat,0,&vdat,sl,opt); }
inline void Refill(HMGL gr, const mglDataA &xdat, const mglDataA &ydat, const mglDataA &zdat, const mglDataA &vdat, const char *opt="")
{ mgl_data_refill_gr(gr,this,&xdat,&ydat,&zdat,&vdat,-1,opt); }
/// Set the data by triangulated surface values assuming x,y,z in axis range of gr
inline void Grid(HMGL gr, const mglDataA &x, const mglDataA &y, const mglDataA &z, const char *opt="")
{ mgl_data_grid(gr,this,&x,&y,&z,opt); }
/// Set the data by triangulated surface values assuming x,y,z in range [p1, p2]
inline void Grid(const mglDataA &xdat, const mglDataA &ydat, const mglDataA &vdat, mglPoint p1, mglPoint p2)
{ mgl_data_grid_xy(this,&xdat,&ydat,&vdat,p1.x,p2.x,p1.y,p2.y); }
/// Put value to data element(s)
inline void Put(mreal val, long i=-1, long j=-1, long k=-1)
{ mgl_data_put_val(this,val,i,j,k); }
/// Put array to data element(s)
inline void Put(const mglDataA &dat, long i=-1, long j=-1, long k=-1)
{ mgl_data_put_dat(this,&dat,i,j,k); }
/// Set names for columns (slices)
inline void SetColumnId(const char *ids)
{ mgl_data_set_id(this,ids); }
/// Make new id
inline void NewId() { id.clear(); }
/// Read data from tab-separated text file with auto determining size
inline bool Read(const char *fname)
{ return mgl_data_read(this,fname); }
/// Read data from text file with specifeid size
inline bool Read(const char *fname,long mx,long my=1,long mz=1)
{ return mgl_data_read_dim(this,fname,mx,my,mz); }
/// Import data array from PNG file according color scheme
inline void Import(const char *fname,const char *scheme,mreal v1=0,mreal v2=1)
{ mgl_data_import(this,fname,scheme,v1,v2); }
/// Read data from tab-separated text files with auto determining size which filenames are result of sprintf(fname,templ,t) where t=from:step:to
inline bool ReadRange(const char *templ, double from, double to, double step=1, bool as_slice=false)
{ return mgl_data_read_range(this,templ,from,to,step,as_slice); }
/// Read data from tab-separated text files with auto determining size which filenames are satisfied to template (like "t_*.dat")
inline bool ReadAll(const char *templ, bool as_slice=false)
{ return mgl_data_read_all(this, templ, as_slice); }
/// Read data from text file with size specified at beginning of the file
inline bool ReadMat(const char *fname, long dim=2)
{ return mgl_data_read_mat(this,fname,dim); }
/// Read data array from HDF file (parse HDF4 and HDF5 files)
inline int ReadHDF(const char *fname,const char *data)
{ return mgl_data_read_hdf(this,fname,data); }
/// Scan textual file for template and fill data array
inline int ScanFile(const char *fname, const char *templ)
{ return mgl_data_scan_file(this,fname, templ); }
/// Get column (or slice) of the data filled by formulas of named columns
inline mglData Column(const char *eq) const
{ return mglData(true,mgl_data_column(this,eq)); }
/// Get momentum (1D-array) of data along direction 'dir'. String looks like "x1" for median in x-direction, "x2" for width in x-dir and so on.
inline mglData Momentum(char dir, const char *how) const
{ return mglData(true,mgl_data_momentum(this,dir,how)); }
/// Get pulse properties: pulse maximum and its position, pulse duration near maximum and by half height, energy in first pulse.
inline mglData Pulse(char dir) const
{ return mglData(true,mgl_data_pulse(this,dir)); }
/// Get sub-array of the data with given fixed indexes
inline mglData SubData(long xx,long yy=-1,long zz=-1) const
{ return mglData(true,mgl_data_subdata(this,xx,yy,zz)); }
inline mglData SubData(const mglDataA &xx, const mglDataA &yy, const mglDataA &zz) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,&zz)); }
inline mglData SubData(const mglDataA &xx, const mglDataA &yy) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,&yy,0)); }
inline mglData SubData(const mglDataA &xx) const
{ return mglData(true,mgl_data_subdata_ext(this,&xx,0,0)); }
/// Get trace of the data array
inline mglData Trace() const
{ return mglData(true,mgl_data_trace(this)); }
/// Create n-th points distribution of this data values in range [v1, v2]
inline mglData Hist(long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist(this,n,v1,v2,nsub)); }
/// Create n-th points distribution of this data values in range [v1, v2] with weight w
inline mglData Hist(const mglDataA &w, long n,mreal v1=0,mreal v2=1, long nsub=0) const
{ return mglData(true,mgl_data_hist_w(this,&w,n,v1,v2,nsub)); }
/// Get array which is result of summation in given direction or directions
inline mglData Sum(const char *dir) const
{ return mglData(true,mgl_data_sum(this,dir)); }
/// Get array which is result of maximal values in given direction or directions
inline mglData Max(const char *dir) const
{ return mglData(true,mgl_data_max_dir(this,dir)); }
/// Get array which is result of minimal values in given direction or directions
inline mglData Min(const char *dir) const
{ return mglData(true,mgl_data_min_dir(this,dir)); }
/// Get the data which is direct multiplication (like, d[i,j] = this[i]*a[j] and so on)
inline mglData Combine(const mglDataA &dat) const
{ return mglData(true,mgl_data_combine(this,&dat)); }
/// Resize the data to new size of box [x1,x2]*[y1,y2]*[z1,z2]
inline mglData Resize(long mx,long my=0,long mz=0, mreal x1=0,mreal x2=1, mreal y1=0,mreal y2=1, mreal z1=0,mreal z2=1) const
{ return mglData(true,mgl_data_resize_box(this,mx,my,mz,x1,x2,y1,y2,z1,z2)); }
/// Get array which values is result of interpolation this for coordinates from other arrays
inline mglData Evaluate(const mglData &idat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,0,0,norm)); }
inline mglData Evaluate(const mglData &idat, const mglData &jdat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,&jdat,0,norm)); }
inline mglData Evaluate(const mglData &idat, const mglData &jdat, const mglData &kdat, bool norm=true) const
{ return mglData(true,mgl_data_evaluate(this,&idat,&jdat,&kdat,norm)); }
/// Find roots for set of nonlinear equations defined by textual formula
inline mglData Roots(const char *func, char var='x') const
{ return mglData(true,mgl_data_roots(func, this, var)); }
/// Find correlation with another data arrays
inline mglData Correl(const mglDataA &dat, const char *dir) const
{ return mglData(true,mgl_data_correl(this,&dat,dir)); }
/// Find auto correlation function
inline mglData AutoCorrel(const char *dir) const
{ return mglData(true,mgl_data_correl(this,this,dir)); }
/// Cumulative summation the data in given direction or directions
inline void CumSum(const char *dir) { mgl_data_cumsum(this,dir); }
/// Integrate (cumulative summation) the data in given direction or directions
inline void Integral(const char *dir) { mgl_data_integral(this,dir); }
/// Differentiate the data in given direction or directions
inline void Diff(const char *dir) { mgl_data_diff(this,dir); }
/// Differentiate the parametrically specified data along direction v1 with v2=const
inline void Diff(const mglDataA &v1, const mglDataA &v2)
{ mgl_data_diff_par(this,&v1,&v2,0); }
/// Differentiate the parametrically specified data along direction v1 with v2,v3=const
inline void Diff(const mglDataA &v1, const mglDataA &v2, const mglDataA &v3)
{ mgl_data_diff_par(this,&v1,&v2,&v3); }
/// Double-differentiate (like Laplace operator) the data in given direction
inline void Diff2(const char *dir) { mgl_data_diff2(this,dir); }
/// Swap left and right part of the data in given direction (useful for Fourier spectrum)
inline void Swap(const char *dir) { mgl_data_swap(this,dir); }
/// Roll data along direction dir by num slices
inline void Roll(char dir, long num) { mgl_data_roll(this,dir,num); }
/// Mirror the data in given direction (useful for Fourier spectrum)
inline void Mirror(const char *dir) { mgl_data_mirror(this,dir); }
/// Sort rows (or slices) by values of specified column
inline void Sort(long idx, long idy=-1) { mgl_data_sort(this,idx,idy); }
/// Set as the data envelop
inline void Envelop(char dir='x')
{ mgl_data_envelop(this,dir); }
/// Remove phase jump
inline void Sew(const char *dirs="xyz", mreal da=2*mglPi)
{ mgl_data_sew(this,dirs,da); }
/// Smooth the data on specified direction or directions
/** String \a dir may contain:
* ‘x’, ‘y’, ‘z’ for 1st, 2nd or 3d dimension;
* ‘dN’ for linear averaging over N points;
* ‘3’ for linear averaging over 3 points;
* ‘5’ for linear averaging over 5 points.
* By default quadratic averaging over 5 points is used. */
inline void Smooth(const char *dirs="xyz",mreal delta=0)
{ mgl_data_smooth(this,dirs,delta); }
/// Normalize the data to range [v1,v2]
inline void Norm(mreal v1=0,mreal v2=1,bool sym=false,long dim=0)
{ mgl_data_norm(this,v1,v2,sym,dim); }
/// Normalize the data to range [v1,v2] slice by slice
inline void NormSl(mreal v1=0,mreal v2=1,char dir='z',bool keep_en=true,bool sym=false)
{ mgl_data_norm_slice(this,v1,v2,dir,keep_en,sym); }
/// Apply Hankel transform
inline void Hankel(const char *dir) { mgl_data_hankel(this,dir); }
/// Apply Sin-Fourier transform
inline void SinFFT(const char *dir) { mgl_data_sinfft(this,dir); }
/// Apply Cos-Fourier transform
inline void CosFFT(const char *dir) { mgl_data_cosfft(this,dir); }
/// Fill data by 'x'/'k' samples for Hankel ('h') or Fourier ('f') transform
inline void FillSample(const char *how)
{ mgl_data_fill_sample(this,how); }
/// Apply wavelet transform
/** Parameter \a dir may contain:
* ‘x‘,‘y‘,‘z‘ for directions,
* ‘d‘ for daubechies, ‘D‘ for centered daubechies,
* ‘h‘ for haar, ‘H‘ for centered haar,
* ‘b‘ for bspline, ‘B‘ for centered bspline,
* ‘i‘ for applying inverse transform. */
inline void Wavelet(const char *how, int k) { mgl_data_wavelet(this, how, k); }
/// Return an approximated x-value (root) when dat(x) = val
inline mreal Solve(mreal val, bool use_spline=true, long i0=0) const
{ return mgl_data_solve_1d(this, val, use_spline, i0); }
/// Return an approximated value (root) when dat(x) = val
inline mglData Solve(mreal val, char dir, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, 0, norm)); }
inline mglData Solve(mreal val, char dir, const mglData &i0, bool norm=true) const
{ return mglData(true,mgl_data_solve(this, val, dir, &i0, norm)); }
/// Interpolate by cubic spline the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Spline(mreal x,mreal y=0,mreal z=0) const
{ return value(x,y,z); }
/// Interpolate by cubic spline the data to given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Spline1(mreal x,mreal y=0,mreal z=0) const
{ return value(x*(nx-1),y*(ny-1),z*(nz-1)); }
/// Interpolate by linear function the data to given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Linear(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear_ext(this,x,y,z,0,0,0); }
/// Interpolate by line the data to given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Linear1(mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1),0,0,0); }
/// Interpolate by cubic spline the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Spline(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ return valueD(x,y,z, &(dif.x),&(dif.y), &(dif.z)); }
/// Interpolate by cubic spline the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Spline1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ mreal res=valueD(x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
dif.x*=nx>1?nx-1:1; dif.y*=ny>1?ny-1:1; dif.z*=nz>1?nz-1:1; return res; }
/// Interpolate by linear function the data and return its derivatives at given point x=[0...nx-1], y=[0...ny-1], z=[0...nz-1]
inline mreal Linear(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ return mgl_data_linear_ext(this,x,y,z, &(dif.x),&(dif.y), &(dif.z)); }
/// Interpolate by line the data and return its derivatives at given point x,\a y,\a z which normalized in range [0, 1]
inline mreal Linear1(mglPoint &dif, mreal x,mreal y=0,mreal z=0) const
{ mreal res=mgl_data_linear_ext(this,x*(nx-1),y*(ny-1),z*(nz-1), &(dif.x),&(dif.y), &(dif.z));
dif.x*=nx>1?nx-1:1; dif.y*=ny>1?ny-1:1; dif.z*=nz>1?nz-1:1; return res; }
/// Copy data from other mglData variable
inline const mglDataA &operator=(const mglDataA &d)
{ if(this!=&d) mgl_data_set(this,&d); return d; }
inline const mglData &operator=(const mglData &d)
{ if(this!=&d) mgl_data_set(this,&d); return d; }
inline mreal operator=(mreal val)
{ mgl_data_fill(this,val,val,'x'); return val; }
/// Multiply the data by other one for each element
inline void operator*=(const mglDataA &d) { mgl_data_mul_dat(this,&d); }
/// Divide the data by other one for each element
inline void operator/=(const mglDataA &d) { mgl_data_div_dat(this,&d); }
/// Add the other data
inline void operator+=(const mglDataA &d) { mgl_data_add_dat(this,&d); }
/// Subtract the other data
inline void operator-=(const mglDataA &d) { mgl_data_sub_dat(this,&d); }
/// Multiply each element by the number
inline void operator*=(mreal d) { mgl_data_mul_num(this,d); }
/// Divide each element by the number
inline void operator/=(mreal d) { mgl_data_div_num(this,d); }
/// Add the number
inline void operator+=(mreal d) { mgl_data_add_num(this,d); }
/// Subtract the number
inline void operator-=(mreal d) { mgl_data_sub_num(this,d); }
#ifndef SWIG
/// Direct access to the data cell
inline mreal &operator[](long i) { return a[i]; }
// NOTE see 13.10 for operator(), operator[] -- m.b. I should add it ???
#endif
#ifndef DEBUG
/// Get the value in given cell of the data
mreal v(long i,long j=0,long k=0) const { return a[i+nx*(j+ny*k)]; }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { a[i+nx*(j+ny*k)]=val; }
#else
/// Get the value in given cell of the data with border checking
mreal v(long i,long j=0,long k=0) const { return mgl_data_get_value(this,i,j,k); }
/// Set the value in given cell of the data
void set_v(mreal val, long i,long j=0,long k=0) { mgl_data_set_value(this,val,i,j,k); }
#endif
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ return mglSpline3(a,nx,ny,nz,x,y,z,dx,dy,dz); }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return mglSpline3s(a,nx,ny,nz,x,y,z); }
mreal vthr(long i) const { return a[i]; }
// add for speeding up !!!
mreal dvx(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return i>0? (i<nx-1? (a[i0+1]-a[i0-1])/2:a[i0]-a[i0-1]) : a[i0+1]-a[i0]; }
mreal dvy(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k);
return j>0? (j<ny-1? (a[i0+nx]-a[i0-nx])/2:a[i0]-a[i0-nx]) : a[i0+nx]-a[i0];}
mreal dvz(long i,long j=0,long k=0) const
{ register long i0=i+nx*(j+ny*k), n=nx*ny;
return k>0? (k<nz-1? (a[i0+n]-a[i0-n])/2:a[i0]-a[i0-n]) : a[i0+n]-a[i0]; }
};
//-----------------------------------------------------------------------------
#ifndef SWIG
inline mglData operator*(const mglDataA &b, const mglDataA &d)
{ mglData a(&b); a*=d; return a; }
inline mglData operator*(mreal b, const mglDataA &d)
{ mglData a(&d); a*=b; return a; }
inline mglData operator*(const mglDataA &d, mreal b)
{ mglData a(&d); a*=b; return a; }
inline mglData operator-(const mglDataA &b, const mglDataA &d)
{ mglData a(&b); a-=d; return a; }
inline mglData operator-(mreal b, const mglDataA &d)
{ mglData a(&d); a-=b; return a; }
inline mglData operator-(const mglDataA &d, mreal b)
{ mglData a(&d); a-=b; return a; }
inline mglData operator+(const mglDataA &b, const mglDataA &d)
{ mglData a(&b); a+=d; return a; }
inline mglData operator+(mreal b, const mglDataA &d)
{ mglData a(&d); a+=b; return a; }
inline mglData operator+(const mglDataA &d, mreal b)
{ mglData a(&d); a+=b; return a; }
inline mglData operator/(const mglDataA &b, const mglDataA &d)
{ mglData a(&b); a/=d; return a; }
inline mglData operator/(const mglDataA &d, mreal b)
{ mglData a(&d); a/=b; return a; }
inline bool operator==(const mglData &b, const mglData &d)
{ if(b.nx!=d.nx || b.ny!=d.ny || b.nz!=d.nz) return false;
return !memcmp(b.a,d.a,b.nx*b.ny*b.nz*sizeof(mreal)); }
inline bool operator<(const mglDataA &b, const mglDataA &d)
{ return b.Maximal()<d.Maximal(); }
inline bool operator>(const mglDataA &b, const mglDataA &d)
{ return b.Minimal()>d.Minimal(); }
//-----------------------------------------------------------------------------
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for amplitude and phase
inline mglData mglTransformA(const mglDataA &am, const mglDataA &ph, const char *tr)
{ return mglData(true,mgl_transform_a(&am,&ph,tr)); }
/// Integral data transformation (like Fourier 'f' or 'i', Hankel 'h' or None 'n') for real and imaginary parts
inline mglData mglTransform(const mglDataA &re, const mglDataA &im, const char *tr)
{ return mglData(true,mgl_transform(&re,&im,tr)); }
/// Apply Fourier transform for the data and save result into it
inline void mglFourier(mglData &re, mglData &im, const char *dir)
{ mgl_data_fourier(&re,&im,dir); }
/// Short time Fourier analysis for real and imaginary parts. Output is amplitude of partial Fourier (result will have size {dn, floor(nx/dn), ny} for dir='x'
inline mglData mglSTFA(const mglDataA &re, const mglDataA &im, long dn, char dir='x')
{ return mglData(true, mgl_data_stfa(&re,&im,dn,dir)); }
//-----------------------------------------------------------------------------
/// Saves result of PDE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglData mglPDE(HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100,const char *opt="")
{ return mglData(true, mgl_pde_solve(gr,ham, &ini_re, &ini_im, dz, k0,opt)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO2d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0)); }
inline mglData mglQO2d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo2d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy)); }
/// Saves result of PDE solving for "Hamiltonian" ham with initial conditions ini along a curve ray (must have nx>=7 - x,y,z,px,py,pz,tau or nx=5 - x,y,px,py,tau)
inline mglData mglQO3d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, 0, 0, 0)); }
inline mglData mglQO3d(const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
{ return mglData(true, mgl_qo3d_solve(ham, &ini_re, &ini_im, &ray, r, k0, &xx, &yy, &zz)); }
/// Finds ray with starting point r0, p0 (and prepares ray data for mglQO2d)
inline mglData mglRay(const char *ham, mglPoint r0, mglPoint p0, mreal dt=0.1, mreal tmax=10)
{ return mglData(true, mgl_ray_trace(ham, r0.x, r0.y, r0.z, p0.x, p0.y, p0.z, dt, tmax)); }
/// Saves result of ODE solving (|u|^2) for "Hamiltonian" ham with initial conditions ini
inline mglData mglODE(const char *df, const char *var, const mglDataA &ini, mreal dt=0.1, mreal tmax=10)
{ return mglData(true, mgl_ode_solve_str(df,var, &ini, dt, tmax)); }
/// Calculate Jacobian determinant for D{x(u,v), y(u,v)} = dx/du*dy/dv-dx/dv*dy/du
inline mglData mglJacobian(const mglDataA &x, const mglDataA &y)
{ return mglData(true, mgl_jacobian_2d(&x, &y)); }
/// Calculate Jacobian determinant for D{x(u,v,w), y(u,v,w), z(u,v,w)}
inline mglData mglJacobian(const mglDataA &x, const mglDataA &y, const mglDataA &z)
{ return mglData(true, mgl_jacobian_3d(&x, &y, &z)); }
/// Do something like Delone triangulation
inline mglData mglTriangulation(const mglDataA &x, const mglDataA &y, const mglDataA &z)
{ return mglData(true,mgl_triangulation_3d(&x,&y,&z)); }
inline mglData mglTriangulation(const mglDataA &x, const mglDataA &y)
{ return mglData(true,mgl_triangulation_2d(&x,&y)); }
/// Get array which is n-th pairs {x[i],y[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS2d(const mglDataA &A, long n, long skip=20)
{ return mglData(true,mgl_data_ifs_2d(&A,n,skip)); }
/// Get array which is n-th points {x[i],y[i],z[i]} for iterated function system (fractal) generated by A
inline mglData mglIFS3d(const mglDataA &A, long n, long skip=20)
{ return mglData(true,mgl_data_ifs_3d(&A,n,skip)); }
//-----------------------------------------------------------------------------
/// Get sub-array of the data with given fixed indexes
inline mglData mglSubData(const mglDataA &dat, long xx, long yy=-1, long zz=-1)
{ return mglData(true,mgl_data_subdata(&dat,xx,yy,zz)); }
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy, const mglDataA &zz)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,&zz)); }
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx, const mglDataA &yy)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,&yy,0)); }
inline mglData mglSubData(const mglDataA &dat, const mglDataA &xx)
{ return mglData(true,mgl_data_subdata_ext(&dat,&xx,0,0)); }
//-----------------------------------------------------------------------------
/// Prepare coefficients for global spline interpolation
inline mglData mglGSplineInit(const mglDataA &xdat, const mglDataA &ydat)
{ return mglData(true,mgl_gspline_init(&xdat, &ydat)); }
/// Evaluate global spline (and its derivatives d1, d2 if not NULL) using prepared coefficients \a coef
inline mreal mglGSpline(const mglDataA &coef, mreal dx, mreal *d1=0, mreal *d2=0)
{ return mgl_gspline(&coef, dx, d1,d2); }
//-----------------------------------------------------------------------------
/// Wrapper class for expression evaluating
class MGL_EXPORT mglExpr
{
HMEX ex;
mglExpr(const mglExpr &){} // copying is not allowed
const mglExpr &operator=(const mglExpr &t){return t;} // copying is not allowed
public:
mglExpr(const char *expr) { ex = mgl_create_expr(expr); }
#if MGL_HAVE_RVAL
mglExpr(mglExpr &&d):ex(d.ex) { d.ex=0; }
#endif
~mglExpr() { mgl_delete_expr(ex); }
/// Return value of expression for given x,y,z variables
inline double Eval(double x, double y=0, double z=0)
{ return mgl_expr_eval(ex,x,y,z); }
/// Return value of expression differentiation over variable dir for given x,y,z variables
inline double Diff(char dir, double x, double y=0, double z=0)
{ return mgl_expr_diff(ex,dir, x,y,z); }
#ifndef SWIG
/// Return value of expression for given variables
inline double Eval(mreal var[26])
{ return mgl_expr_eval_v(ex,var); }
/// Return value of expression differentiation over variable dir for given variables
inline double Diff(char dir, mreal var[26])
{ return mgl_expr_diff_v(ex,dir, var); }
#endif
};
//-----------------------------------------------------------------------------
/// Class which present variable as data array
class MGL_EXPORT mglDataV : public mglDataA
{
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
mreal di, dj, dk, a0;
public:
mglDataV(long xx=1,long yy=1,long zz=1,mreal x1=0,mreal x2=mglNaN,char dir='x'):nx(xx),ny(yy),nz(zz)
{ Fill(x1,x2,dir); }
mglDataV(const mglDataV &d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk),a0(d.a0) {}
#if MGL_HAVE_RVAL
mglDataV(mglDataV &&d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk),a0(d.a0)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.func=0; }
#endif
virtual ~mglDataV() {}
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ di=mx>1?di*(nx-1)/(mx-1):0; dj=my>1?dj*(ny-1)/(my-1):0;
dk=mz>1?dk*(nz-1)/(mz-1):0; nx=mx; ny=my; nz=mz; }
/// For going throw all elements
inline void All() { di=dj=dk=1; a0=0; }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Fill(mreal x1,mreal x2=mglNaN,char dir='x')
{
di=dj=dk=0; a0=x1;
if(mgl_isnum(x2))
{
if(dir=='x' && nx>1) di=(x2-x1)/(nx-1);
if(dir=='y' && ny>1) dj=(x2-x1)/(ny-1);
if(dir=='z' && nz>1) dk=(x2-x1)/(nz-1);
}
}
mreal Maximal() const
{ return a0+mgl_max(mgl_max(di*(nx-1),dj*(ny-1)),mgl_max(dk*(nz-1),0)); }
mreal Minimal() const
{ return a0+mgl_min(mgl_min(di*(nx-1),dj*(ny-1)),mgl_min(dk*(nz-1),0)); }
/// Copy data from other mglDataV variable
inline const mglDataV &operator=(const mglDataV &d)
{ nx=d.nx; ny=d.ny; nz=d.nz; a0=d.a0;
di=d.di; dj=d.dj; dk=d.dk; return d; }
inline mreal operator=(mreal val)
{ di=dj=dk=0; a0=val; return val; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ if(dx) *dx=di; if(dy) *dy=dj; if(dz) *dz=dk;
return a0+di*x+dj*y+dk*z; }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const { return a0+di*x+dj*y+dk*z; }
mreal v(long i,long j=0,long k=0) const { return a0+di*i+dj*j+dk*k; }
mreal vthr(long ii) const
{ register long i=ii%nx, j=(ii/nx)%ny, k=ii/(nx*ny); return a0+di*i+dj*j+dk*k; }
// add for speeding up !!!
mreal dvx(long ,long =0,long =0) const { return di; }
mreal dvy(long ,long =0,long =0) const { return dj; }
mreal dvz(long ,long =0,long =0) const { return dk; }
};
//-----------------------------------------------------------------------------
/// Class which present FFT frequency as data array
class MGL_EXPORT mglDataW : public mglDataA
{
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
mreal di, dj, dk;
public:
mglDataW(long xx=1,long yy=1,long zz=1,mreal dp=0,char dir='x'):nx(xx),ny(yy),nz(zz)
{ Freq(dp,dir); }
mglDataW(const mglDataW &d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk) {}
#if MGL_HAVE_RVAL
mglDataW(mglDataW &&d):nx(d.nx),ny(d.ny),nz(d.nz),di(d.di),dj(d.dj),dk(d.dk)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.func=0; }
#endif
virtual ~mglDataW() {}
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1)
{ nx=mx; ny=my; nz=mz; }
/// For going throw all elements
inline void All() { di=dj=dk=1; }
/// Equidistantly fill the data to range [x1,x2] in direction dir
inline void Freq(mreal dp,char dir='x')
{
di=dj=dk=0;
if(dir=='x') di=dp;
if(dir=='y') dj=dp;
if(dir=='z') dk=dp;
}
mreal Maximal() const
{ return mgl_max(mgl_max(di*(nx-1),dj*(ny-1)),mgl_max(dk*(nz-1),0)); }
mreal Minimal() const
{ return mgl_min(mgl_min(di*(nx-1),dj*(ny-1)),mgl_min(dk*(nz-1),0)); }
/// Copy data from other mglDataV variable
inline const mglDataW &operator=(const mglDataW &d)
{ nx=d.nx; ny=d.ny; nz=d.nz; di=d.di; dj=d.dj; dk=d.dk; return d; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ if(dx) *dx=di; if(dy) *dy=dj; if(dz) *dz=dk;
return di*(x<nx/2?x:x-nx)+dj*(y<ny/2?y:y-ny)+dk*(z<nz/2?z:z-nz); }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return di*(x<nx/2?x:x-nx)+dj*(y<ny/2?y:y-ny)+dk*(z<nz/2?z:z-nz); }
mreal v(long i,long j=0,long k=0) const
{ return di*(i<nx/2?i:i-nx)+dj*(j<ny/2?j:j-ny)+dk*(k<nz/2?k:k-nz); }
mreal vthr(long ii) const
{ register long i=ii%nx, j=(ii/nx)%ny, k=ii/(nx*ny);
return di*(i<nx/2?i:i-nx)+dj*(j<ny/2?j:j-ny)+dk*(k<nz/2?k:k-nz); }
// add for speeding up !!!
mreal dvx(long ,long =0,long =0) const { return di; }
mreal dvy(long ,long =0,long =0) const { return dj; }
mreal dvz(long ,long =0,long =0) const { return dk; }
};
//-----------------------------------------------------------------------------
/// Class which present variable as data array
class MGL_EXPORT mglDataF : public mglDataA
{
long nx; ///< number of points in 1st dimensions ('x' dimension)
long ny; ///< number of points in 2nd dimensions ('y' dimension)
long nz; ///< number of points in 3d dimensions ('z' dimension)
std::string str; ///< function as string
mglPoint v1, v2; ///< ranges for coordinates
HMEX ex; ///< parsed variant
mreal dx,dy,dz;
inline void setD()
{
dx = nx>1?(v2.x-v1.x)/(nx-1):0;
dy = ny>1?(v2.y-v1.y)/(ny-1):0;
dz = nz>1?(v2.z-v1.z)/(nz-1):0;
}
mreal (*dfunc)(mreal i, mreal j, mreal k, void *par);
void *par;
public:
mglDataF(long xx=1,long yy=1,long zz=1):nx(xx),ny(yy),nz(zz), dfunc(0),par(0)
{ ex=0; v2.Set(1,1,1); setD(); }
mglDataF(const mglDataF &d) : nx(d.nx), ny(d.ny), nz(d.nz), str(d.str), v1(d.v1), v2(d.v2), dx(d.dx),dy(d.dy),dz(d.dz), dfunc(d.dfunc),par(d.par)
{ ex = mgl_create_expr(str.c_str()); }
#if MGL_HAVE_RVAL
mglDataF(mglDataF &&d):nx(d.nx),ny(d.ny),nz(d.nz), str(d.str), v1(d.v1),v2(d.v2), ex(d.ex), dx(d.dx),dy(d.dy),dz(d.dz), dfunc(d.dfunc),par(d.par)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.ex=0; d.func=0; }
#endif
virtual ~mglDataF() { mgl_delete_expr(ex); }
/// Get sizes
long GetNx() const { return nx; }
long GetNy() const { return ny; }
long GetNz() const { return nz; }
/// Create or recreate the array with specified size and fill it by zero
inline void Create(long mx,long my=1,long mz=1) { nx=mx; ny=my; nz=mz; setD(); }
inline void SetRanges(mglPoint p1, mglPoint p2) { v1=p1; v2=p2; setD(); }
/// Set formula to be used as dfunction
inline void SetFormula(const char *eq)
{
mgl_delete_expr(ex); dfunc=0; par=0;
if(eq && *eq) { ex = mgl_create_expr(eq); str=eq; }
else { ex=0; str=""; }
}
/// Set function and coordinates range [r1,r2]
inline void SetFunc(mreal (*f)(mreal,mreal,mreal,void*), void *p=NULL)
{ mgl_delete_expr(ex); ex=0; dfunc=f; par=p; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal i,mreal j=0,mreal k=0, mreal *di=0,mreal *dj=0,mreal *dk=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(di) *di = 0; if(dj) *dj = 0; if(dk) *dk = 0;
if(dfunc)
{
res = dfunc(x,y,z, par);
if(di) *di = dfunc(x+dx,y,z, par)-res;
if(dj) *dj = dfunc(x,y+dy,z, par)-res;
if(dk) *dk = dfunc(x,y,z+dz, par)-res;
}
else if(ex)
{
if(di) *di = mgl_expr_diff(ex,'x',x,y,z)*dx;
if(dj) *dj = mgl_expr_diff(ex,'y',x,y,z)*dy;
if(dk) *dk = mgl_expr_diff(ex,'z',x,y,z)*dz;
res = mgl_expr_eval(ex,x,y,z);
}
return res;
}
/// Get the interpolated value in given data cell without border checking
mreal value(mreal i,mreal j=0,mreal k=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(dfunc) res = dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x,y,z);
return res;
}
/// Copy data from other mglDataV variable
inline const mglDataF &operator=(const mglDataF &d)
{ nx=d.nx; ny=d.ny; nz=d.nz; v1=d.v1; v2=d.v2; setD();
str=d.str; ex = mgl_create_expr(str.c_str()); dfunc=d.dfunc; par=d.par; return d; }
/// Get the value in given cell of the data without border checking
mreal v(long i,long j=0,long k=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(dfunc) res = dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x,y,z);
return res;
}
mreal vthr(long i) const
{
mreal res=0, x=v1.x+dx*(i%nx), y=v1.y+dy*((i/nx)%ny), z=v1.z+dz*(i/(nx*ny));
if(dfunc) res = dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x,y,z);
return res;
}
// add for speeding up !!!
mreal dvx(long i,long j=0,long k=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(dfunc) res = dfunc(x+dx,y,z, par)-dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x+dx,y,z)-mgl_expr_eval(ex,x,y,z);
return res;
}
mreal dvy(long i,long j=0,long k=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(dfunc) res = dfunc(x,y+dy,z, par)-dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x,y+dy,z)-mgl_expr_eval(ex,x,y,z);
return res;
}
mreal dvz(long i,long j=0,long k=0) const
{
mreal res=0, x=v1.x+dx*i, y=v1.y+dy*j, z=v1.z+dz*k;
if(dfunc) res = dfunc(x,y,z+dz, par)-dfunc(x,y,z, par);
else if(ex) res = mgl_expr_eval(ex,x,y,z+dz)-mgl_expr_eval(ex,x,y,z);
return res;
}
};
//-----------------------------------------------------------------------------
/// Class which present variable as data array
class MGL_EXPORT mglDataT : public mglDataA
{
const mglDataA &dat;
long ind;
public:
mglDataT(const mglDataT &d) : dat(d.dat), ind(d.ind) { s = d.s; }
mglDataT(const mglDataA &d, long col=0) : dat(d), ind(col) {}
#if MGL_HAVE_RVAL
mglDataT(mglDataT &&d):dat(d.dat),ind(d.ind)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.func=0; }
#endif
virtual ~mglDataT() {}
/// Get sizes
long GetNx() const { return dat.GetNy(); }
long GetNy() const { return dat.GetNz(); }
long GetNz() const { return 1; }
mreal Maximal() const
{ return mglSubData(dat,ind).Maximal(); }
mreal Minimal() const
{ return mglSubData(dat,ind).Minimal(); }
inline void SetInd(long i, const wchar_t *name)
{ ind = i; s = name; }
inline void SetInd(long i, wchar_t name)
{ ind = i; s = name; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ if(dz) *dz=0; return dat.valueD(ind,x,y,0,dx,dy); }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return dat.value(ind,x,y); }
/// Get the value in given cell of the data without border checking
mreal v(long i,long j=0,long =0) const
{ return dat.v(ind,i,j); }
mreal vthr(long i) const
{ return dat.vthr(ind+dat.GetNx()*i); }
// add for speeding up !!!
mreal dvx(long i,long j=0,long =0) const
{ return dat.dvy(ind,i,j); }
mreal dvy(long i,long j=0,long =0) const
{ return dat.dvz(ind,i,j); }
mreal dvz(long ,long =0,long =0) const
{ return 0; }
};
//-----------------------------------------------------------------------------
class MGL_EXPORT mglDataR : public mglDataA
{
const mglDataA &dat;
long ind;
public:
mglDataR(const mglDataR &d) : dat(d.dat), ind(d.ind) { s = d.s; }
mglDataR(const mglDataA &d, long row=0) : dat(d), ind(row) {}
#if MGL_HAVE_RVAL
mglDataR(mglDataR &&d):dat(d.dat),ind(d.ind)
{ s=d.s; temp=d.temp; func=d.func; o=d.o; d.func=0; }
#endif
virtual ~mglDataR() {}
/// Get sizes
long GetNx() const { return dat.GetNx(); }
long GetNy() const { return 1; }
long GetNz() const { return 1; }
mreal Maximal() const
{ return mglSubData(dat,-1,ind).Maximal(); }
mreal Minimal() const
{ return mglSubData(dat,-1,ind).Minimal(); }
inline void SetInd(long i, const wchar_t *name)
{ ind = i; s = name; }
inline void SetInd(long i, wchar_t name)
{ ind = i; s = name; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ if(dy) *dy=0; if(dz) *dz=0; return dat.valueD(x,ind,0,dx); }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return dat.value(x,ind,0); }
/// Get the value in given cell of the data without border checking
mreal v(long i,long =0,long =0) const
{ return dat.v(i,ind,0); }
mreal vthr(long i) const
{ return dat.vthr(i+dat.GetNx()*ind); }
// add for speeding up !!!
mreal dvx(long i,long j=0,long =0) const
{ return dat.dvx(i,ind,0); }
mreal dvy(long i,long j=0,long =0) const
{ return 0; }
mreal dvz(long ,long =0,long =0) const
{ return 0; }
};
//-----------------------------------------------------------------------------
/// Class for replacement of std::vector
class MGL_EXPORT mglDataS : public mglDataA
{
public:
std::vector<mreal> dat;
mglDataS(const mglDataS &st) : dat(st.dat) {}
mglDataS(const std::vector<mreal> &d) : dat(d) {}
mglDataS(size_t s=1) { dat.resize(s); }
~mglDataS() {}
inline void reserve(size_t num) { dat.reserve(num); }
inline void clear() { dat.clear(); }
inline double operator[](size_t i) { return dat[i]; }
inline void push_back(double t) { dat.push_back(t); }
inline size_t size() const { return dat.size(); }
const mglDataS &operator=(const mglDataS &st) { dat = st.dat; return st; }
const std::vector<mreal> &operator=(const std::vector<mreal> &st) { dat = st; return st; }
/// Get the interpolated value and its derivatives in given data cell without border checking
mreal valueD(mreal x,mreal y=0,mreal z=0,mreal *dx=0,mreal *dy=0,mreal *dz=0) const
{ return mglSpline3(dat.data(),dat.size(),1,1,x,0,0,dx,dy,dz); }
/// Get the interpolated value in given data cell without border checking
mreal value(mreal x,mreal y=0,mreal z=0) const
{ return mglSpline3s(dat.data(),dat.size(),1,1,x,0,0); }
mreal v(long i,long j=0,long k=0) const { return dat[i]; }
mreal vthr(long i) const { return dat[i]; };
long GetNx() const { return dat.size(); }
long GetNy() const { return 1; }
long GetNz() const { return 1; }
mreal dvx(long i,long j=0,long k=0) const
{ return i>0? (i<long(dat.size()-1)? (dat[i+1]-dat[i-1])/2:dat[i]-dat[i-1]) : dat[i+1]-dat[i]; }
mreal dvy(long i,long j=0,long k=0) const { return 1; }
mreal dvz(long i,long j=0,long k=0) const { return 1; }
};
//-----------------------------------------------------------------------------
#endif
#endif
|