This file is indexed.

/usr/include/oce/gp_Ax3.hxx is in liboce-foundation-dev 0.17.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Ax3_HeaderFile
#define _gp_Ax3_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>

#include <gp_Ax1.hxx>
#include <gp_Dir.hxx>
#include <Standard_Storable.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_PrimitiveTypes.hxx>
class Standard_ConstructionError;
class gp_Ax2;
class gp_Pnt;
class gp_Dir;
class gp_Ax1;
class gp_Trsf;
class gp_Vec;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Ax3);

//! Describes a coordinate system in 3D space. Unlike a
//! gp_Ax2 coordinate system, a gp_Ax3 can be
//! right-handed ("direct sense") or left-handed ("indirect sense").
//! A coordinate system is defined by:
//! -   its origin (also referred to as its "Location point"), and
//! -   three orthogonal unit vectors, termed the "X
//! Direction", the "Y Direction" and the "Direction" (also
//! referred to as the "main Direction").
//! The "Direction" of the coordinate system is called its
//! "main Direction" because whenever this unit vector is
//! modified, the "X Direction" and the "Y Direction" are
//! recomputed. However, when we modify either the "X
//! Direction" or the "Y Direction", "Direction" is not modified.
//! "Direction" is also the "Z Direction".
//! The "main Direction" is always parallel to the cross
//! product of its "X Direction" and "Y Direction".
//! If the coordinate system is right-handed, it satisfies the equation:
//! "main Direction" = "X Direction" ^ "Y Direction"
//! and if it is left-handed, it satisfies the equation:
//! "main Direction" = -"X Direction" ^ "Y Direction"
//! A coordinate system is used:
//! -   to describe geometric entities, in particular to position
//! them. The local coordinate system of a geometric
//! entity serves the same purpose as the STEP function
//! "axis placement three axes", or
//! -   to define geometric transformations.
//! Note:
//! -   We refer to the "X Axis", "Y Axis" and "Z Axis",
//! respectively, as the axes having:
//! -   the origin of the coordinate system as their origin, and
//! -   the unit vectors "X Direction", "Y Direction" and
//! "main Direction", respectively, as their unit vectors.
//! -   The "Z Axis" is also the "main Axis".
//! -   gp_Ax2 is used to define a coordinate system that must be always right-handed.
class gp_Ax3 
{

public:

  DEFINE_STANDARD_ALLOC

  
  //! Creates an object corresponding to the reference
  //! coordinate system (OXYZ).
  Standard_EXPORT gp_Ax3();
  
  //! Creates  a  coordinate  system from a right-handed
  //! coordinate system.
  Standard_EXPORT gp_Ax3(const gp_Ax2& A);
  
  //! Creates a  right handed axis placement with the
  //! "Location"  point  P  and  two  directions, N    gives the
  //! "Direction" and Vx gives the "XDirection".
  //! Raises ConstructionError if N and Vx are parallel (same or opposite orientation).
  Standard_EXPORT gp_Ax3(const gp_Pnt& P, const gp_Dir& N, const gp_Dir& Vx);
  

  //! Creates an axis placement with the  "Location" point <P>
  //! and the normal direction <V>.
  Standard_EXPORT gp_Ax3(const gp_Pnt& P, const gp_Dir& V);
  
  //! Reverses the X direction of <me>.
  Standard_EXPORT   void XReverse() ;
  
  //! Reverses the Y direction of <me>.
  Standard_EXPORT   void YReverse() ;
  
  //! Reverses the Z direction of <me>.
  Standard_EXPORT   void ZReverse() ;
  
  //! Assigns the origin and "main Direction" of the axis A1 to
  //! this coordinate system, then recomputes its "X Direction" and "Y Direction".
  //! Note:
  //! -   The new "X Direction" is computed as follows:
  //! new "X Direction" = V1 ^(previous "X Direction" ^ V)
  //! where V is the "Direction" of A1.
  //! -   The orientation of this coordinate system
  //! (right-handed or left-handed) is not modified.
  //! Raises ConstructionError  if the "Direction" of <A1> and the "XDirection" of <me>
  //! are parallel (same or opposite orientation) because it is
  //! impossible to calculate the new "XDirection" and the new
  //! "YDirection".
  Standard_EXPORT   void SetAxis (const gp_Ax1& A1) ;
  

  //! Changes the main direction of this coordinate system,
  //! then recomputes its "X Direction" and "Y Direction".
  //! Note:
  //! -   The new "X Direction" is computed as follows:
  //! new "X Direction" = V ^ (previous "X Direction" ^ V).
  //! -   The orientation of this coordinate system (left- or right-handed) is not modified.
  //! Raises ConstructionError if <V< and the previous "XDirection" are parallel
  //! because it is impossible to calculate the new "XDirection"
  //! and the new "YDirection".
  Standard_EXPORT   void SetDirection (const gp_Dir& V) ;
  

  //! Changes the "Location" point (origin) of <me>.
  Standard_EXPORT   void SetLocation (const gp_Pnt& P) ;
  

  //! Changes the "Xdirection" of <me>. The main direction
  //! "Direction" is not modified, the "Ydirection" is modified.
  //! If <Vx> is not normal to the main direction then <XDirection>
  //! is computed as follows XDirection = Direction ^ (Vx ^ Direction).
  //! Raises ConstructionError if <Vx> is parallel (same or opposite
  //! orientation) to the main direction of <me>
  Standard_EXPORT   void SetXDirection (const gp_Dir& Vx) ;
  

  //! Changes the "Ydirection" of <me>. The main direction is not
  //! modified but the "Xdirection" is changed.
  //! If <Vy> is not normal to the main direction then "YDirection"
  //! is computed as  follows
  //! YDirection = Direction ^ (<Vy> ^ Direction).
  //! Raises ConstructionError if <Vy> is parallel to the main direction of <me>
      void SetYDirection (const gp_Dir& Vy) ;
  

  //! Computes the angular value between the main direction of
  //! <me> and the main direction of <Other>. Returns the angle
  //! between 0 and PI in radians.
      Standard_Real Angle (const gp_Ax3& Other)  const;
  

  //! Returns the main axis of <me>. It is the "Location" point
  //! and the main "Direction".
     const  gp_Ax1& Axis()  const;
  
  //! Computes a right-handed coordinate system with the
  //! same "X Direction" and "Y Direction" as those of this
  //! coordinate system, then recomputes the "main Direction".
  //! If this coordinate system is right-handed, the result
  //! returned is the same coordinate system. If this
  //! coordinate system is left-handed, the result is reversed.
  Standard_EXPORT   gp_Ax2 Ax2()  const;
  

  //! Returns the main direction of <me>.
     const  gp_Dir& Direction()  const;
  

  //! Returns the "Location" point (origin) of <me>.
     const  gp_Pnt& Location()  const;
  

  //! Returns the "XDirection" of <me>.
     const  gp_Dir& XDirection()  const;
  

  //! Returns the "YDirection" of <me>.
     const  gp_Dir& YDirection()  const;
  
  //! Returns  True if  the  coordinate  system is right-handed. i.e.
  //! XDirection().Crossed(YDirection()).Dot(Direction()) > 0
      Standard_Boolean Direct()  const;
  

  //! Returns True if
  //! . the distance between the "Location" point of <me> and
  //! <Other> is lower or equal to LinearTolerance and
  //! . the distance between the "Location" point of <Other> and
  //! <me> is lower or equal to LinearTolerance and
  //! . the main direction of <me> and the main direction of
  //! <Other> are parallel (same or opposite orientation).
      Standard_Boolean IsCoplanar (const gp_Ax3& Other, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance)  const;
  
  //! Returns True if
  //! . the distance between <me> and the "Location" point of A1
  //! is lower of equal to LinearTolerance and
  //! . the distance between A1 and the "Location" point of <me>
  //! is lower or equal to LinearTolerance and
  //! . the main direction of <me> and the direction of A1 are normal.
      Standard_Boolean IsCoplanar (const gp_Ax1& A1, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance)  const;
  
  Standard_EXPORT   void Mirror (const gp_Pnt& P) ;
  

  //! Performs the symmetrical transformation of an axis
  //! placement with respect to the point P which is the
  //! center of the symmetry.
  //! Warnings :
  //! The main direction of the axis placement is not changed.
  //! The "XDirection" and the "YDirection" are reversed.
  //! So the axis placement stay right handed.
  Standard_EXPORT   gp_Ax3 Mirrored (const gp_Pnt& P)  const;
  
  Standard_EXPORT   void Mirror (const gp_Ax1& A1) ;
  

  //! Performs the symmetrical transformation of an axis
  //! placement with respect to an axis placement which
  //! is the axis of the symmetry.
  //! The transformation is performed on the "Location"
  //! point, on the "XDirection" and "YDirection".
  //! The resulting main "Direction" is the cross product between
  //! the "XDirection" and the "YDirection" after transformation.
  Standard_EXPORT   gp_Ax3 Mirrored (const gp_Ax1& A1)  const;
  
  Standard_EXPORT   void Mirror (const gp_Ax2& A2) ;
  

  //! Performs the symmetrical transformation of an axis
  //! placement with respect to a plane.
  //! The axis placement  <A2> locates the plane of the symmetry :
  //! (Location, XDirection, YDirection).
  //! The transformation is performed on the "Location"
  //! point, on the "XDirection" and "YDirection".
  //! The resulting main "Direction" is the cross product between
  //! the "XDirection" and the "YDirection" after transformation.
  Standard_EXPORT   gp_Ax3 Mirrored (const gp_Ax2& A2)  const;
  
  Standard_EXPORT   void Rotate (const gp_Ax1& A1, const Standard_Real Ang) ;
  

  //! Rotates an axis placement. <A1> is the axis of the
  //! rotation . Ang is the angular value of the rotation
  //! in radians.
  Standard_EXPORT   gp_Ax3 Rotated (const gp_Ax1& A1, const Standard_Real Ang)  const;
  
  Standard_EXPORT   void Scale (const gp_Pnt& P, const Standard_Real S) ;
  

  //! Applies a scaling transformation on the axis placement.
  //! The "Location" point of the axisplacement is modified.
  //! Warnings :
  //! If the scale <S> is negative :
  //! . the main direction of the axis placement is not changed.
  //! . The "XDirection" and the "YDirection" are reversed.
  //! So the axis placement stay right handed.
  Standard_EXPORT   gp_Ax3 Scaled (const gp_Pnt& P, const Standard_Real S)  const;
  
  Standard_EXPORT   void Transform (const gp_Trsf& T) ;
  

  //! Transforms an axis placement with a Trsf.
  //! The "Location" point, the "XDirection" and the
  //! "YDirection" are transformed with T.  The resulting
  //! main "Direction" of <me> is the cross product between
  //! the "XDirection" and the "YDirection" after transformation.
  Standard_EXPORT   gp_Ax3 Transformed (const gp_Trsf& T)  const;
  
  Standard_EXPORT   void Translate (const gp_Vec& V) ;
  

  //! Translates an axis plaxement in the direction of the vector
  //! <V>. The magnitude of the translation is the vector's magnitude.
  Standard_EXPORT   gp_Ax3 Translated (const gp_Vec& V)  const;
  
  Standard_EXPORT   void Translate (const gp_Pnt& P1, const gp_Pnt& P2) ;
  

  //! Translates an axis placement from the point <P1> to the
  //! point <P2>.
  Standard_EXPORT   gp_Ax3 Translated (const gp_Pnt& P1, const gp_Pnt& P2)  const;
    const gp_Ax1& _CSFDB_Getgp_Ax3axis() const { return axis; }
    const gp_Dir& _CSFDB_Getgp_Ax3vydir() const { return vydir; }
    const gp_Dir& _CSFDB_Getgp_Ax3vxdir() const { return vxdir; }



protected:




private: 


  gp_Ax1 axis;
  gp_Dir vydir;
  gp_Dir vxdir;


};


#include <gp_Ax3.lxx>





#endif // _gp_Ax3_HeaderFile