This file is indexed.

/usr/include/octomap/OcTreeIterator.hxx is in liboctomap-dev 1.8.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
 * OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
 * http://octomap.github.com/
 *
 * Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
 * All rights reserved.
 * License: New BSD
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the University of Freiburg nor the names of its
 *       contributors may be used to endorse or promote products derived from
 *       this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef OCTOMAP_OCTREEITERATOR_HXX_
#define OCTOMAP_OCTREEITERATOR_HXX_

    /**
     * Base class for OcTree iterators. So far, all iterator's are
     * const with respect to the tree. This file is included within
     * OcTreeBaseImpl.h, you should probably not include this directly.
     */
    class iterator_base : public std::iterator<std::forward_iterator_tag, NodeType>{
    public:
      struct StackElement;
      /// Default ctor, only used for the end-iterator
      iterator_base() : tree(NULL), maxDepth(0){}

      /**
       * Constructor of the iterator. Initializes the iterator with the default
       * constructor (= end() iterator) if tree is empty or NULL.
       *
       * @param tree OcTreeBaseImpl on which the iterator is used on
       * @param depth Maximum depth to traverse the tree. 0 (default): unlimited
       */
      iterator_base(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, uint8_t depth=0)
        : tree((tree && tree->root) ? tree : NULL), maxDepth(depth)
      {
        if (tree && maxDepth == 0)
          maxDepth = tree->getTreeDepth();

        if (tree && tree->root){ // tree is not empty
          StackElement s;
          s.node = tree->root;
          s.depth = 0;
          s.key[0] = s.key[1] = s.key[2] = tree->tree_max_val;
          stack.push(s);
        } else{ // construct the same as "end"
          tree = NULL;
          this->maxDepth = 0;
        }
      }

      /// Copy constructor of the iterator
      iterator_base(const iterator_base& other)
      : tree(other.tree), maxDepth(other.maxDepth), stack(other.stack) {}

      /// Comparison between iterators. First compares the tree, then stack size and top element of stack.
      bool operator==(const iterator_base& other) const {
        return (tree ==other.tree && stack.size() == other.stack.size()
            && (stack.size()==0 || (stack.size() > 0 && (stack.top().node == other.stack.top().node
                && stack.top().depth == other.stack.top().depth
                && stack.top().key == other.stack.top().key ))));
      }

      /// Comparison between iterators. First compares the tree, then stack size and top element of stack.
      bool operator!=(const iterator_base& other) const {
        return (tree !=other.tree || stack.size() != other.stack.size()
            || (stack.size() > 0 && ((stack.top().node != other.stack.top().node
                || stack.top().depth != other.stack.top().depth
                || stack.top().key != other.stack.top().key ))));
      }

      iterator_base& operator=(const iterator_base& other){
        tree = other.tree;
        maxDepth = other.maxDepth;
        stack = other.stack;
        return *this;
      };

      /// Ptr operator will return the current node in the octree which the
      /// iterator is referring to
      NodeType const* operator->() const { return stack.top().node;}

      /// Ptr operator will return the current node in the octree which the
      /// iterator is referring to
      NodeType* operator->() { return stack.top().node;}

      /// Return the current node in the octree which the
      /// iterator is referring to
      const NodeType& operator*() const { return *(stack.top().node);}

      /// Return the current node in the octree which the
      /// iterator is referring to
      NodeType& operator*() { return *(stack.top().node);}

      /// return the center coordinate of the current node
      point3d getCoordinate() const {
        return tree->keyToCoord(stack.top().key, stack.top().depth);
      }

      /// @return single coordinate of the current node
      double getX() const{
        return tree->keyToCoord(stack.top().key[0], stack.top().depth);
      }
      /// @return single coordinate of the current node
      double getY() const{
        return tree->keyToCoord(stack.top().key[1], stack.top().depth);
      }
      /// @return single coordinate of the current node
      double getZ() const{
        return tree->keyToCoord(stack.top().key[2], stack.top().depth);
      }

      /// @return the side of the volume occupied by the current node
      double getSize() const {return  tree->getNodeSize(stack.top().depth); }

      /// return depth of the current node
      unsigned getDepth() const {return unsigned(stack.top().depth); }

      /// @return the OcTreeKey of the current node
      const OcTreeKey& getKey() const {return stack.top().key;}

      /// @return the OcTreeKey of the current node, for nodes with depth != maxDepth
      OcTreeKey getIndexKey() const {
        return computeIndexKey(tree->getTreeDepth() - stack.top().depth, stack.top().key);
      }


      /// Element on the internal recursion stack of the iterator
      struct StackElement{
        NodeType* node;
        OcTreeKey key;
        uint8_t depth;
      };


    protected:
      OcTreeBaseImpl<NodeType,INTERFACE> const* tree; ///< Octree this iterator is working on
      uint8_t maxDepth; ///< Maximum depth for depth-limited queries

      /// Internal recursion stack. Apparently a stack of vector works fastest here.
      std::stack<StackElement,std::vector<StackElement> > stack;
      
      /// One step of depth-first tree traversal.
      /// How this is used depends on the actual iterator.
      void singleIncrement(){
        StackElement top = stack.top();
        stack.pop();
        if (top.depth == maxDepth)
          return;

        StackElement s;
        s.depth = top.depth +1;

        key_type center_offset_key = tree->tree_max_val >> s.depth;
        // push on stack in reverse order
        for (int i=7; i>=0; --i) {
          if (tree->nodeChildExists(top.node,i)) {
            computeChildKey(i, center_offset_key, top.key, s.key);
            s.node = tree->getNodeChild(top.node, i);
            //OCTOMAP_DEBUG_STR("Current depth: " << int(top.depth) << " new: "<< int(s.depth) << " child#" << i <<" ptr: "<<s.node);
            stack.push(s);
            assert(s.depth <= maxDepth);
          }
        }
      }

    };

    /**
     * Iterator over the complete tree (inner nodes and leafs).
     * See below for example usage.
     * Note that the non-trivial call to tree->end_tree() should be done only once
     * for efficiency!
     *
     * @code
     * for(OcTreeTYPE::tree_iterator it = tree->begin_tree(),
     *        end=tree->end_tree(); it!= end; ++it)
     * {
     *   //manipulate node, e.g.:
     *   std::cout << "Node center: " << it.getCoordinate() << std::endl;
     *   std::cout << "Node size: " << it.getSize() << std::endl;
     *   std::cout << "Node value: " << it->getValue() << std::endl;
     * }
     * @endcode
     */
    class tree_iterator : public iterator_base {
    public:
      tree_iterator() : iterator_base(){}
      /**
       * Constructor of the iterator.
       *
       * @param tree OcTreeBaseImpl on which the iterator is used on
       * @param depth Maximum depth to traverse the tree. 0 (default): unlimited
       */
      tree_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, uint8_t depth=0) : iterator_base(tree, depth) {};

      /// postfix increment operator of iterator (it++)
      tree_iterator operator++(int){
        tree_iterator result = *this;
        ++(*this);
        return result;
      }

      /// Prefix increment operator to advance the iterator
      tree_iterator& operator++(){

        if (!this->stack.empty()){
          this->singleIncrement();
        }

        if (this->stack.empty()){
          this->tree = NULL;
        }

        return *this;
      }

      /// @return whether the current node is a leaf, i.e. has no children or is at max level
      bool isLeaf() const{ 
        return (!this->tree->nodeHasChildren(this->stack.top().node) || this->stack.top().depth == this->maxDepth); 
      }
    };

    /**
     * Iterator to iterate over all leafs of the tree.
     * Inner nodes are skipped. See below for example usage.
     * Note that the non-trivial call to tree->end_leafs() should be done only once
     * for efficiency!
     *
     * @code
     * for(OcTreeTYPE::leaf_iterator it = tree->begin_leafs(),
     *        end=tree->end_leafs(); it!= end; ++it)
     * {
     *   //manipulate node, e.g.:
     *   std::cout << "Node center: " << it.getCoordinate() << std::endl;
     *   std::cout << "Node size: " << it.getSize() << std::endl;
     *   std::cout << "Node value: " << it->getValue() << std::endl;
     * }
     * @endcode
     *
     */
    class leaf_iterator : public iterator_base {
      public:
          leaf_iterator() : iterator_base(){}

          /**
          * Constructor of the iterator.
          *
          * @param tree OcTreeBaseImpl on which the iterator is used on
          * @param depth Maximum depth to traverse the tree. 0 (default): unlimited
          */
          leaf_iterator(OcTreeBaseImpl<NodeType, INTERFACE> const* tree, uint8_t depth=0) : iterator_base(tree, depth) {
            // tree could be empty (= no stack)
            if (this->stack.size() > 0){
              // skip forward to next valid leaf node:
              // add root another time (one will be removed) and ++
              this->stack.push(this->stack.top());
              operator ++();
            }
          }

          leaf_iterator(const leaf_iterator& other) : iterator_base(other) {};

          /// postfix increment operator of iterator (it++)
          leaf_iterator operator++(int){
            leaf_iterator result = *this;
            ++(*this);
            return result;
          }

          /// prefix increment operator of iterator (++it)
          leaf_iterator& operator++(){
            if (this->stack.empty()){
              this->tree = NULL; // TODO check?

            } else {
              this->stack.pop();

              // skip forward to next leaf
              while(!this->stack.empty()  
                  && this->stack.top().depth < this->maxDepth
                  && this->tree->nodeHasChildren(this->stack.top().node))
              {
                this->singleIncrement();
              }
              // done: either stack is empty (== end iterator) or a next leaf node is reached!
              if (this->stack.empty())
                this->tree = NULL;
            }


            return *this;
          }

    };

    /**
     * Bounding-box leaf iterator. This iterator will traverse all leaf nodes
     * within a given bounding box (axis-aligned). See below for example usage.
     * Note that the non-trivial call to tree->end_leafs_bbx() should be done only once
     * for efficiency!
     *
     * @code
     * for(OcTreeTYPE::leaf_bbx_iterator it = tree->begin_leafs_bbx(min,max),
     *        end=tree->end_leafs_bbx(); it!= end; ++it)
     * {
     *   //manipulate node, e.g.:
     *   std::cout << "Node center: " << it.getCoordinate() << std::endl;
     *   std::cout << "Node size: " << it.getSize() << std::endl;
     *   std::cout << "Node value: " << it->getValue() << std::endl;
     * }
     * @endcode
     */
    class leaf_bbx_iterator : public iterator_base {
    public:
      leaf_bbx_iterator() : iterator_base() {};
      /**
      * Constructor of the iterator. The bounding box corners min and max are
      * converted into an OcTreeKey first.
      *
      * @note Due to rounding and discretization
      * effects, nodes may be traversed that have float coordinates appearing
      * outside of the (float) bounding box. However, the node's complete volume
      * will include the bounding box coordinate. For a more exact control, use
      * the constructor with OcTreeKeys instead.
      *
      * @param tree OcTreeBaseImpl on which the iterator is used on
      * @param min Minimum point3d of the axis-aligned boundingbox
      * @param max Maximum point3d of the axis-aligned boundingbox
      * @param depth Maximum depth to traverse the tree. 0 (default): unlimited
      */
      leaf_bbx_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, const point3d& min, const point3d& max, uint8_t depth=0)
        : iterator_base(tree, depth)
      {
        if (this->stack.size() > 0){
          assert(tree);
          if (!this->tree->coordToKeyChecked(min, minKey) || !this->tree->coordToKeyChecked(max, maxKey)){
            // coordinates invalid, set to end iterator
            tree = NULL;
            this->maxDepth = 0;
          } else{  // else: keys are generated and stored

            // advance from root to next valid leaf in bbx:
            this->stack.push(this->stack.top());
            this->operator ++();
          }
        }

      }

      /**
      * Constructor of the iterator. This version uses the exact keys as axis-aligned
      * bounding box (including min and max).
      *
      * @param tree OcTreeBaseImpl on which the iterator is used on
      * @param min Minimum OcTreeKey to be included in the axis-aligned boundingbox
      * @param max Maximum OcTreeKey to be included in the axis-aligned boundingbox
      * @param depth Maximum depth to traverse the tree. 0 (default): unlimited
      */
      leaf_bbx_iterator(OcTreeBaseImpl<NodeType,INTERFACE> const* tree, const OcTreeKey& min, const OcTreeKey& max, uint8_t depth=0)
        : iterator_base(tree, depth), minKey(min), maxKey(max)
      {
        // tree could be empty (= no stack)
        if (this->stack.size() > 0){
          // advance from root to next valid leaf in bbx:
          this->stack.push(this->stack.top());
          this->operator ++();
        }
      }

      leaf_bbx_iterator(const leaf_bbx_iterator& other) : iterator_base(other) {
        minKey = other.minKey;
        maxKey = other.maxKey;
      }



      /// postfix increment operator of iterator (it++)
      leaf_bbx_iterator operator++(int){
        leaf_bbx_iterator result = *this;
        ++(*this);
        return result;
      }

      /// prefix increment operator of iterator (++it)
      leaf_bbx_iterator& operator++(){
        if (this->stack.empty()){
          this->tree = NULL; // TODO check?

        } else {
          this->stack.pop();

          // skip forward to next leaf
          while(!this->stack.empty()  
              && this->stack.top().depth < this->maxDepth
              && this->tree->nodeHasChildren(this->stack.top().node))
          {
            this->singleIncrement();
          }
          // done: either stack is empty (== end iterator) or a next leaf node is reached!
          if (this->stack.empty())
            this->tree = NULL;
        }


        return *this;
      };

    protected:

      void singleIncrement(){
        typename iterator_base::StackElement top = this->stack.top();
        this->stack.pop();

        typename iterator_base::StackElement s;
        s.depth = top.depth +1;
        key_type center_offset_key = this->tree->tree_max_val >> s.depth;
        // push on stack in reverse order
        for (int i=7; i>=0; --i) {
          if (this->tree->nodeChildExists(top.node, i)) {
            computeChildKey(i, center_offset_key, top.key, s.key);

            // overlap of query bbx and child bbx?
            if ((minKey[0] <= (s.key[0] + center_offset_key)) && (maxKey[0] >= (s.key[0] - center_offset_key))
                && (minKey[1] <= (s.key[1] + center_offset_key)) && (maxKey[1] >= (s.key[1] - center_offset_key))
                && (minKey[2] <= (s.key[2] + center_offset_key)) && (maxKey[2] >= (s.key[2] - center_offset_key)))
            {
              s.node = this->tree->getNodeChild(top.node, i);
              this->stack.push(s);
              assert(s.depth <= this->maxDepth);
            }
          }
        }
      }


      OcTreeKey minKey;
      OcTreeKey maxKey;
    };


#endif /* OCTREEITERATOR_HXX_ */