This file is indexed.

/usr/include/OGRE/OgreBitwise.h is in libogre-1.9-dev 1.9.0+dfsg1-7+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef _Bitwise_H__
#define _Bitwise_H__

#include "OgrePrerequisites.h"

namespace Ogre {
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Math
	*  @{
	*/

    /** Class for manipulating bit patterns.
    */
    class Bitwise {
    public:
        /** Returns the most significant bit set in a value.
        */
        static FORCEINLINE unsigned int mostSignificantBitSet(unsigned int value)
        {
            unsigned int result = 0;
            while (value != 0) {
                ++result;
                value >>= 1;
            }
            return result-1;
        }
        /** Returns the closest power-of-two number greater or equal to value.
            @note 0 and 1 are powers of two, so 
                firstPO2From(0)==0 and firstPO2From(1)==1.
        */
        static FORCEINLINE uint32 firstPO2From(uint32 n)
        {
            --n;            
            n |= n >> 16;
            n |= n >> 8;
            n |= n >> 4;
            n |= n >> 2;
            n |= n >> 1;
            ++n;
            return n;
        }
        /** Determines whether the number is power-of-two or not.
            @note 0 and 1 are tread as power of two.
        */
        template<typename T>
        static FORCEINLINE bool isPO2(T n)
        {
            return (n & (n-1)) == 0;
        }
        /** Returns the number of bits a pattern must be shifted right by to
            remove right-hand zeros.
        */
		template<typename T>
        static FORCEINLINE unsigned int getBitShift(T mask)
		{
			if (mask == 0)
				return 0;

			unsigned int result = 0;
			while ((mask & 1) == 0) {
				++result;
				mask >>= 1;
			}
			return result;
		}

        /** Takes a value with a given src bit mask, and produces another
            value with a desired bit mask.
            @remarks
                This routine is useful for colour conversion.
        */
		template<typename SrcT, typename DestT>
        static inline DestT convertBitPattern(SrcT srcValue, SrcT srcBitMask, DestT destBitMask)
		{
			// Mask off irrelevant source value bits (if any)
			srcValue = srcValue & srcBitMask;

			// Shift source down to bottom of DWORD
			const unsigned int srcBitShift = getBitShift(srcBitMask);
			srcValue >>= srcBitShift;

			// Get max value possible in source from srcMask
			const SrcT srcMax = srcBitMask >> srcBitShift;

			// Get max available in dest
			const unsigned int destBitShift = getBitShift(destBitMask);
			const DestT destMax = destBitMask >> destBitShift;

			// Scale source value into destination, and shift back
			DestT destValue = (srcValue * destMax) / srcMax;
			return (destValue << destBitShift);
		}

        /**
         * Convert N bit colour channel value to P bits. It fills P bits with the
         * bit pattern repeated. (this is /((1<<n)-1) in fixed point)
         */
        static inline unsigned int fixedToFixed(uint32 value, unsigned int n, unsigned int p) 
        {
            if(n > p) 
            {
                // Less bits required than available; this is easy
                value >>= n-p;
            } 
            else if(n < p)
            {
                // More bits required than are there, do the fill
                // Use old fashioned division, probably better than a loop
                if(value == 0)
                        value = 0;
                else if(value == (static_cast<unsigned int>(1)<<n)-1)
                        value = (1<<p)-1;
                else    value = value*(1<<p)/((1<<n)-1);
            }
            return value;    
        }

        /**
         * Convert floating point colour channel value between 0.0 and 1.0 (otherwise clamped) 
         * to integer of a certain number of bits. Works for any value of bits between 0 and 31.
         */
        static inline unsigned int floatToFixed(const float value, const unsigned int bits)
        {
            if(value <= 0.0f) return 0;
            else if (value >= 1.0f) return (1<<bits)-1;
            else return (unsigned int)(value * (1<<bits));     
        }

        /**
         * Fixed point to float
         */
        static inline float fixedToFloat(unsigned value, unsigned int bits)
        {
            return (float)value/(float)((1<<bits)-1);
        }

        /**
         * Write a n*8 bits integer value to memory in native endian.
         */
        static inline void intWrite(void *dest, const int n, const unsigned int value)
        {
            switch(n) {
                case 1:
                    ((uint8*)dest)[0] = (uint8)value;
                    break;
                case 2:
                    ((uint16*)dest)[0] = (uint16)value;
                    break;
                case 3:
#if OGRE_ENDIAN == OGRE_ENDIAN_BIG      
                    ((uint8*)dest)[0] = (uint8)((value >> 16) & 0xFF);
                    ((uint8*)dest)[1] = (uint8)((value >> 8) & 0xFF);
                    ((uint8*)dest)[2] = (uint8)(value & 0xFF);
#else
                    ((uint8*)dest)[2] = (uint8)((value >> 16) & 0xFF);
                    ((uint8*)dest)[1] = (uint8)((value >> 8) & 0xFF);
                    ((uint8*)dest)[0] = (uint8)(value & 0xFF);
#endif
                    break;
                case 4:
                    ((uint32*)dest)[0] = (uint32)value;                
                    break;                
            }        
        }
        /**
         * Read a n*8 bits integer value to memory in native endian.
         */
        static inline unsigned int intRead(const void *src, int n) {
            switch(n) {
                case 1:
                    return ((const uint8*)src)[0];
                case 2:
                    return ((const uint16*)src)[0];
                case 3:
#if OGRE_ENDIAN == OGRE_ENDIAN_BIG      
                    return ((uint32)((const uint8*)src)[0]<<16)|
                            ((uint32)((const uint8*)src)[1]<<8)|
                            ((uint32)((const uint8*)src)[2]);
#else
                    return ((uint32)((const uint8*)src)[0])|
                            ((uint32)((const uint8*)src)[1]<<8)|
                            ((uint32)((const uint8*)src)[2]<<16);
#endif
                case 4:
                    return ((const uint32*)src)[0];
            } 
            return 0; // ?
        }

        /** Convert a float32 to a float16 (NV_half_float)
         	Courtesy of OpenEXR
        */
        static inline uint16 floatToHalf(float i)
        {
            union { float f; uint32 i; } v;
            v.f = i;
            return floatToHalfI(v.i);
        }
		/** Converts float in uint32 format to a a half in uint16 format
		*/
        static inline uint16 floatToHalfI(uint32 i)
        {
            register int s =  (i >> 16) & 0x00008000;
            register int e = ((i >> 23) & 0x000000ff) - (127 - 15);
            register int m =   i        & 0x007fffff;
        
            if (e <= 0)
            {
                if (e < -10)
                {
                    return 0;
                }
                m = (m | 0x00800000) >> (1 - e);
        
                return static_cast<uint16>(s | (m >> 13));
            }
            else if (e == 0xff - (127 - 15))
            {
                if (m == 0) // Inf
                {
                    return static_cast<uint16>(s | 0x7c00);
                } 
                else    // NAN
                {
                    m >>= 13;
                    return static_cast<uint16>(s | 0x7c00 | m | (m == 0));
                }
            }
            else
            {
                if (e > 30) // Overflow
                {
                    return static_cast<uint16>(s | 0x7c00);
                }
        
                return static_cast<uint16>(s | (e << 10) | (m >> 13));
            }
        }
        
        /**
         * Convert a float16 (NV_half_float) to a float32
         * Courtesy of OpenEXR
         */
        static inline float halfToFloat(uint16 y)
        {
            union { float f; uint32 i; } v;
            v.i = halfToFloatI(y);
            return v.f;
        }
		/** Converts a half in uint16 format to a float
		 	in uint32 format
		 */
        static inline uint32 halfToFloatI(uint16 y)
        {
            register int s = (y >> 15) & 0x00000001;
            register int e = (y >> 10) & 0x0000001f;
            register int m =  y        & 0x000003ff;
        
            if (e == 0)
            {
                if (m == 0) // Plus or minus zero
                {
                    return s << 31;
                }
                else // Denormalized number -- renormalize it
                {
                    while (!(m & 0x00000400))
                    {
                        m <<= 1;
                        e -=  1;
                    }
        
                    e += 1;
                    m &= ~0x00000400;
                }
            }
            else if (e == 31)
            {
                if (m == 0) // Inf
                {
                    return (s << 31) | 0x7f800000;
                }
                else // NaN
                {
                    return (s << 31) | 0x7f800000 | (m << 13);
                }
            }
        
            e = e + (127 - 15);
            m = m << 13;
        
            return (s << 31) | (e << 23) | m;
        }
         

    };
	/** @} */
	/** @} */

}

#endif