/usr/include/OGRE/OgreImageResampler.h is in libogre-1.9-dev 1.9.0+dfsg1-7+b4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef OGREIMAGERESAMPLER_H
#define OGREIMAGERESAMPLER_H
#include <algorithm>
// this file is inlined into OgreImage.cpp!
// do not include anywhere else.
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Image
* @{
*/
// variable name hints:
// sx_48 = 16/48-bit fixed-point x-position in source
// stepx = difference between adjacent sx_48 values
// sx1 = lower-bound integer x-position in source
// sx2 = upper-bound integer x-position in source
// sxf = fractional weight between sx1 and sx2
// x,y,z = location of output pixel in destination
// nearest-neighbor resampler, does not convert formats.
// templated on bytes-per-pixel to allow compiler optimizations, such
// as simplifying memcpy() and replacing multiplies with bitshifts
template<unsigned int elemsize> struct NearestResampler {
static void scale(const PixelBox& src, const PixelBox& dst) {
// assert(src.format == dst.format);
// srcdata stays at beginning, pdst is a moving pointer
uchar* srcdata = (uchar*)src.data;
uchar* pdst = (uchar*)dst.data;
// sx_48,sy_48,sz_48 represent current position in source
// using 16/48-bit fixed precision, incremented by steps
uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
// for the center of the destination pixel, not the top-left corner
uint64 sz_48 = (stepz >> 1) - 1;
for (size_t z = dst.front; z < dst.back; z++, sz_48 += stepz) {
size_t srczoff = (size_t)(sz_48 >> 48) * src.slicePitch;
uint64 sy_48 = (stepy >> 1) - 1;
for (size_t y = dst.top; y < dst.bottom; y++, sy_48 += stepy) {
size_t srcyoff = (size_t)(sy_48 >> 48) * src.rowPitch;
uint64 sx_48 = (stepx >> 1) - 1;
for (size_t x = dst.left; x < dst.right; x++, sx_48 += stepx) {
uchar* psrc = srcdata +
elemsize*((size_t)(sx_48 >> 48) + srcyoff + srczoff);
memcpy(pdst, psrc, elemsize);
pdst += elemsize;
}
pdst += elemsize*dst.getRowSkip();
}
pdst += elemsize*dst.getSliceSkip();
}
}
};
// default floating-point linear resampler, does format conversion
struct LinearResampler {
static void scale(const PixelBox& src, const PixelBox& dst) {
size_t srcelemsize = PixelUtil::getNumElemBytes(src.format);
size_t dstelemsize = PixelUtil::getNumElemBytes(dst.format);
// srcdata stays at beginning, pdst is a moving pointer
uchar* srcdata = (uchar*)src.data;
uchar* pdst = (uchar*)dst.data;
// sx_48,sy_48,sz_48 represent current position in source
// using 16/48-bit fixed precision, incremented by steps
uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
// for the center of the destination pixel, not the top-left corner
uint64 sz_48 = (stepz >> 1) - 1;
for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
// temp is 16/16 bit fixed precision, used to adjust a source
// coordinate (x, y, or z) backwards by half a pixel so that the
// integer bits represent the first sample (eg, sx1) and the
// fractional bits are the blend weight of the second sample
unsigned int temp = static_cast<unsigned int>(sz_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sz1 = temp >> 16; // src z, sample #1
uint32 sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2
uint64 sy_48 = (stepy >> 1) - 1;
for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
temp = static_cast<unsigned int>(sy_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sy1 = temp >> 16; // src y #1
uint32 sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
uint64 sx_48 = (stepx >> 1) - 1;
for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
temp = static_cast<unsigned int>(sx_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sx1 = temp >> 16; // src x #1
uint32 sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
ColourValue x1y1z1, x2y1z1, x1y2z1, x2y2z1;
ColourValue x1y1z2, x2y1z2, x1y2z2, x2y2z2;
#define UNPACK(dst,x,y,z) PixelUtil::unpackColour(&dst, src.format, \
srcdata + srcelemsize*((x)+(y)*src.rowPitch+(z)*src.slicePitch))
UNPACK(x1y1z1,sx1,sy1,sz1); UNPACK(x2y1z1,sx2,sy1,sz1);
UNPACK(x1y2z1,sx1,sy2,sz1); UNPACK(x2y2z1,sx2,sy2,sz1);
UNPACK(x1y1z2,sx1,sy1,sz2); UNPACK(x2y1z2,sx2,sy1,sz2);
UNPACK(x1y2z2,sx1,sy2,sz2); UNPACK(x2y2z2,sx2,sy2,sz2);
#undef UNPACK
ColourValue accum =
x1y1z1 * ((1.0f - sxf)*(1.0f - syf)*(1.0f - szf)) +
x2y1z1 * ( sxf *(1.0f - syf)*(1.0f - szf)) +
x1y2z1 * ((1.0f - sxf)* syf *(1.0f - szf)) +
x2y2z1 * ( sxf * syf *(1.0f - szf)) +
x1y1z2 * ((1.0f - sxf)*(1.0f - syf)* szf ) +
x2y1z2 * ( sxf *(1.0f - syf)* szf ) +
x1y2z2 * ((1.0f - sxf)* syf * szf ) +
x2y2z2 * ( sxf * syf * szf );
PixelUtil::packColour(accum, dst.format, pdst);
pdst += dstelemsize;
}
pdst += dstelemsize*dst.getRowSkip();
}
pdst += dstelemsize*dst.getSliceSkip();
}
}
};
// float32 linear resampler, converts FLOAT32_RGB/FLOAT32_RGBA only.
// avoids overhead of pixel unpack/repack function calls
struct LinearResampler_Float32 {
static void scale(const PixelBox& src, const PixelBox& dst) {
size_t srcchannels = PixelUtil::getNumElemBytes(src.format) / sizeof(float);
size_t dstchannels = PixelUtil::getNumElemBytes(dst.format) / sizeof(float);
// assert(srcchannels == 3 || srcchannels == 4);
// assert(dstchannels == 3 || dstchannels == 4);
// srcdata stays at beginning, pdst is a moving pointer
float* srcdata = (float*)src.data;
float* pdst = (float*)dst.data;
// sx_48,sy_48,sz_48 represent current position in source
// using 16/48-bit fixed precision, incremented by steps
uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
// for the center of the destination pixel, not the top-left corner
uint64 sz_48 = (stepz >> 1) - 1;
for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
// temp is 16/16 bit fixed precision, used to adjust a source
// coordinate (x, y, or z) backwards by half a pixel so that the
// integer bits represent the first sample (eg, sx1) and the
// fractional bits are the blend weight of the second sample
unsigned int temp = static_cast<unsigned int>(sz_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sz1 = temp >> 16; // src z, sample #1
uint32 sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2
uint64 sy_48 = (stepy >> 1) - 1;
for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
temp = static_cast<unsigned int>(sy_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sy1 = temp >> 16; // src y #1
uint32 sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
uint64 sx_48 = (stepx >> 1) - 1;
for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
temp = static_cast<unsigned int>(sx_48 >> 32);
temp = (temp > 0x8000)? temp - 0x8000 : 0;
uint32 sx1 = temp >> 16; // src x #1
uint32 sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
// process R,G,B,A simultaneously for cache coherence?
float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
#define ACCUM3(x,y,z,factor) \
{ float f = factor; \
size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
accum[2]+=srcdata[off+2]*f; }
#define ACCUM4(x,y,z,factor) \
{ float f = factor; \
size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
accum[2]+=srcdata[off+2]*f; accum[3]+=srcdata[off+3]*f; }
if (srcchannels == 3 || dstchannels == 3) {
// RGB, no alpha
ACCUM3(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
ACCUM3(sx2,sy1,sz1, sxf *(1.0f-syf)*(1.0f-szf));
ACCUM3(sx1,sy2,sz1,(1.0f-sxf)* syf *(1.0f-szf));
ACCUM3(sx2,sy2,sz1, sxf * syf *(1.0f-szf));
ACCUM3(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)* szf );
ACCUM3(sx2,sy1,sz2, sxf *(1.0f-syf)* szf );
ACCUM3(sx1,sy2,sz2,(1.0f-sxf)* syf * szf );
ACCUM3(sx2,sy2,sz2, sxf * syf * szf );
accum[3] = 1.0f;
} else {
// RGBA
ACCUM4(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
ACCUM4(sx2,sy1,sz1, sxf *(1.0f-syf)*(1.0f-szf));
ACCUM4(sx1,sy2,sz1,(1.0f-sxf)* syf *(1.0f-szf));
ACCUM4(sx2,sy2,sz1, sxf * syf *(1.0f-szf));
ACCUM4(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)* szf );
ACCUM4(sx2,sy1,sz2, sxf *(1.0f-syf)* szf );
ACCUM4(sx1,sy2,sz2,(1.0f-sxf)* syf * szf );
ACCUM4(sx2,sy2,sz2, sxf * syf * szf );
}
memcpy(pdst, accum, sizeof(float)*dstchannels);
#undef ACCUM3
#undef ACCUM4
pdst += dstchannels;
}
pdst += dstchannels*dst.getRowSkip();
}
pdst += dstchannels*dst.getSliceSkip();
}
}
};
// byte linear resampler, does not do any format conversions.
// only handles pixel formats that use 1 byte per color channel.
// 2D only; punts 3D pixelboxes to default LinearResampler (slow).
// templated on bytes-per-pixel to allow compiler optimizations, such
// as unrolling loops and replacing multiplies with bitshifts
template<unsigned int channels> struct LinearResampler_Byte {
static void scale(const PixelBox& src, const PixelBox& dst) {
// assert(src.format == dst.format);
// only optimized for 2D
if (src.getDepth() > 1 || dst.getDepth() > 1) {
LinearResampler::scale(src, dst);
return;
}
// srcdata stays at beginning of slice, pdst is a moving pointer
uchar* srcdata = (uchar*)src.data;
uchar* pdst = (uchar*)dst.data;
// sx_48,sy_48 represent current position in source
// using 16/48-bit fixed precision, incremented by steps
uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
uint64 sy_48 = (stepy >> 1) - 1;
for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
// bottom 28 bits of temp are 16/12 bit fixed precision, used to
// adjust a source coordinate backwards by half a pixel so that the
// integer bits represent the first sample (eg, sx1) and the
// fractional bits are the blend weight of the second sample
unsigned int temp = static_cast<unsigned int>(sy_48 >> 36);
temp = (temp > 0x800)? temp - 0x800: 0;
unsigned int syf = temp & 0xFFF;
uint32 sy1 = temp >> 12;
uint32 sy2 = std::min(sy1+1, src.bottom-src.top-1);
size_t syoff1 = sy1 * src.rowPitch;
size_t syoff2 = sy2 * src.rowPitch;
uint64 sx_48 = (stepx >> 1) - 1;
for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
temp = static_cast<unsigned int>(sx_48 >> 36);
temp = (temp > 0x800)? temp - 0x800 : 0;
unsigned int sxf = temp & 0xFFF;
uint32 sx1 = temp >> 12;
uint32 sx2 = std::min(sx1+1, src.right-src.left-1);
unsigned int sxfsyf = sxf*syf;
for (unsigned int k = 0; k < channels; k++) {
unsigned int accum =
srcdata[(sx1 + syoff1)*channels+k]*(0x1000000-(sxf<<12)-(syf<<12)+sxfsyf) +
srcdata[(sx2 + syoff1)*channels+k]*((sxf<<12)-sxfsyf) +
srcdata[(sx1 + syoff2)*channels+k]*((syf<<12)-sxfsyf) +
srcdata[(sx2 + syoff2)*channels+k]*sxfsyf;
// accum is computed using 8/24-bit fixed-point math
// (maximum is 0xFF000000; rounding will not cause overflow)
*pdst++ = static_cast<uchar>((accum + 0x800000) >> 24);
}
}
pdst += channels*dst.getRowSkip();
}
}
};
/** @} */
/** @} */
}
#endif
|