This file is indexed.

/usr/include/OGRE/OgreImageResampler.h is in libogre-1.9-dev 1.9.0+dfsg1-7+b4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef OGREIMAGERESAMPLER_H
#define OGREIMAGERESAMPLER_H

#include <algorithm>

// this file is inlined into OgreImage.cpp!
// do not include anywhere else.
namespace Ogre {
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Image
	*  @{
	*/

// variable name hints:
// sx_48 = 16/48-bit fixed-point x-position in source
// stepx = difference between adjacent sx_48 values
// sx1 = lower-bound integer x-position in source
// sx2 = upper-bound integer x-position in source
// sxf = fractional weight between sx1 and sx2
// x,y,z = location of output pixel in destination

// nearest-neighbor resampler, does not convert formats.
// templated on bytes-per-pixel to allow compiler optimizations, such
// as simplifying memcpy() and replacing multiplies with bitshifts
template<unsigned int elemsize> struct NearestResampler {
	static void scale(const PixelBox& src, const PixelBox& dst) {
		// assert(src.format == dst.format);

		// srcdata stays at beginning, pdst is a moving pointer
		uchar* srcdata = (uchar*)src.data;
		uchar* pdst = (uchar*)dst.data;

		// sx_48,sy_48,sz_48 represent current position in source
		// using 16/48-bit fixed precision, incremented by steps
		uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
		uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
		uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();

		// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
		// for the center of the destination pixel, not the top-left corner
		uint64 sz_48 = (stepz >> 1) - 1;
		for (size_t z = dst.front; z < dst.back; z++, sz_48 += stepz) {
			size_t srczoff = (size_t)(sz_48 >> 48) * src.slicePitch;
			
			uint64 sy_48 = (stepy >> 1) - 1;
			for (size_t y = dst.top; y < dst.bottom; y++, sy_48 += stepy) {
				size_t srcyoff = (size_t)(sy_48 >> 48) * src.rowPitch;
			
				uint64 sx_48 = (stepx >> 1) - 1;
				for (size_t x = dst.left; x < dst.right; x++, sx_48 += stepx) {
					uchar* psrc = srcdata +
						elemsize*((size_t)(sx_48 >> 48) + srcyoff + srczoff);
                    memcpy(pdst, psrc, elemsize);
					pdst += elemsize;
				}
				pdst += elemsize*dst.getRowSkip();
			}
			pdst += elemsize*dst.getSliceSkip();
		}
	}
};


// default floating-point linear resampler, does format conversion
struct LinearResampler {
	static void scale(const PixelBox& src, const PixelBox& dst) {
		size_t srcelemsize = PixelUtil::getNumElemBytes(src.format);
		size_t dstelemsize = PixelUtil::getNumElemBytes(dst.format);

		// srcdata stays at beginning, pdst is a moving pointer
		uchar* srcdata = (uchar*)src.data;
		uchar* pdst = (uchar*)dst.data;
		
		// sx_48,sy_48,sz_48 represent current position in source
		// using 16/48-bit fixed precision, incremented by steps
		uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
		uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
		uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
		
		// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
		// for the center of the destination pixel, not the top-left corner
		uint64 sz_48 = (stepz >> 1) - 1;
		for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
            // temp is 16/16 bit fixed precision, used to adjust a source
            // coordinate (x, y, or z) backwards by half a pixel so that the
            // integer bits represent the first sample (eg, sx1) and the
            // fractional bits are the blend weight of the second sample
            unsigned int temp = static_cast<unsigned int>(sz_48 >> 32);

			temp = (temp > 0x8000)? temp - 0x8000 : 0;
			uint32 sz1 = temp >> 16;				 // src z, sample #1
			uint32 sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
			float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2

			uint64 sy_48 = (stepy >> 1) - 1;
			for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
				temp = static_cast<unsigned int>(sy_48 >> 32);
				temp = (temp > 0x8000)? temp - 0x8000 : 0;
				uint32 sy1 = temp >> 16;					// src y #1
				uint32 sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
				float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
				
				uint64 sx_48 = (stepx >> 1) - 1;
				for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
					temp = static_cast<unsigned int>(sx_48 >> 32);
					temp = (temp > 0x8000)? temp - 0x8000 : 0;
					uint32 sx1 = temp >> 16;					// src x #1
					uint32 sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
					float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
				
					ColourValue x1y1z1, x2y1z1, x1y2z1, x2y2z1;
					ColourValue x1y1z2, x2y1z2, x1y2z2, x2y2z2;

#define UNPACK(dst,x,y,z) PixelUtil::unpackColour(&dst, src.format, \
	srcdata + srcelemsize*((x)+(y)*src.rowPitch+(z)*src.slicePitch))

					UNPACK(x1y1z1,sx1,sy1,sz1); UNPACK(x2y1z1,sx2,sy1,sz1);
					UNPACK(x1y2z1,sx1,sy2,sz1); UNPACK(x2y2z1,sx2,sy2,sz1);
					UNPACK(x1y1z2,sx1,sy1,sz2); UNPACK(x2y1z2,sx2,sy1,sz2);
					UNPACK(x1y2z2,sx1,sy2,sz2); UNPACK(x2y2z2,sx2,sy2,sz2);
#undef UNPACK

					ColourValue accum =
						x1y1z1 * ((1.0f - sxf)*(1.0f - syf)*(1.0f - szf)) +
						x2y1z1 * (        sxf *(1.0f - syf)*(1.0f - szf)) +
						x1y2z1 * ((1.0f - sxf)*        syf *(1.0f - szf)) +
						x2y2z1 * (        sxf *        syf *(1.0f - szf)) +
						x1y1z2 * ((1.0f - sxf)*(1.0f - syf)*        szf ) +
						x2y1z2 * (        sxf *(1.0f - syf)*        szf ) +
						x1y2z2 * ((1.0f - sxf)*        syf *        szf ) +
						x2y2z2 * (        sxf *        syf *        szf );

					PixelUtil::packColour(accum, dst.format, pdst);

					pdst += dstelemsize;
				}
				pdst += dstelemsize*dst.getRowSkip();
			}
			pdst += dstelemsize*dst.getSliceSkip();
		}
	}
};


// float32 linear resampler, converts FLOAT32_RGB/FLOAT32_RGBA only.
// avoids overhead of pixel unpack/repack function calls
struct LinearResampler_Float32 {
	static void scale(const PixelBox& src, const PixelBox& dst) {
		size_t srcchannels = PixelUtil::getNumElemBytes(src.format) / sizeof(float);
		size_t dstchannels = PixelUtil::getNumElemBytes(dst.format) / sizeof(float);
		// assert(srcchannels == 3 || srcchannels == 4);
		// assert(dstchannels == 3 || dstchannels == 4);

		// srcdata stays at beginning, pdst is a moving pointer
		float* srcdata = (float*)src.data;
		float* pdst = (float*)dst.data;
		
		// sx_48,sy_48,sz_48 represent current position in source
		// using 16/48-bit fixed precision, incremented by steps
		uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
		uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
		uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
		
		// note: ((stepz>>1) - 1) is an extra half-step increment to adjust
		// for the center of the destination pixel, not the top-left corner
		uint64 sz_48 = (stepz >> 1) - 1;
		for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
            // temp is 16/16 bit fixed precision, used to adjust a source
            // coordinate (x, y, or z) backwards by half a pixel so that the
            // integer bits represent the first sample (eg, sx1) and the
            // fractional bits are the blend weight of the second sample
            unsigned int temp = static_cast<unsigned int>(sz_48 >> 32);

			temp = (temp > 0x8000)? temp - 0x8000 : 0;
			uint32 sz1 = temp >> 16;				 // src z, sample #1
			uint32 sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
			float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2

			uint64 sy_48 = (stepy >> 1) - 1;
			for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
				temp = static_cast<unsigned int>(sy_48 >> 32);
				temp = (temp > 0x8000)? temp - 0x8000 : 0;
				uint32 sy1 = temp >> 16;					// src y #1
				uint32 sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
				float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
				
				uint64 sx_48 = (stepx >> 1) - 1;
				for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
					temp = static_cast<unsigned int>(sx_48 >> 32);
					temp = (temp > 0x8000)? temp - 0x8000 : 0;
					uint32 sx1 = temp >> 16;					// src x #1
					uint32 sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
					float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
					
					// process R,G,B,A simultaneously for cache coherence?
					float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };

#define ACCUM3(x,y,z,factor) \
	{ float f = factor; \
	size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
    accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
	accum[2]+=srcdata[off+2]*f; }

#define ACCUM4(x,y,z,factor) \
	{ float f = factor; \
	size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
    accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
	accum[2]+=srcdata[off+2]*f; accum[3]+=srcdata[off+3]*f; }

					if (srcchannels == 3 || dstchannels == 3) {
						// RGB, no alpha
						ACCUM3(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
						ACCUM3(sx2,sy1,sz1,      sxf *(1.0f-syf)*(1.0f-szf));
						ACCUM3(sx1,sy2,sz1,(1.0f-sxf)*      syf *(1.0f-szf));
						ACCUM3(sx2,sy2,sz1,      sxf *      syf *(1.0f-szf));
						ACCUM3(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)*      szf );
						ACCUM3(sx2,sy1,sz2,      sxf *(1.0f-syf)*      szf );
						ACCUM3(sx1,sy2,sz2,(1.0f-sxf)*      syf *      szf );
						ACCUM3(sx2,sy2,sz2,      sxf *      syf *      szf );
						accum[3] = 1.0f;
					} else {
						// RGBA
						ACCUM4(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
						ACCUM4(sx2,sy1,sz1,      sxf *(1.0f-syf)*(1.0f-szf));
						ACCUM4(sx1,sy2,sz1,(1.0f-sxf)*      syf *(1.0f-szf));
						ACCUM4(sx2,sy2,sz1,      sxf *      syf *(1.0f-szf));
						ACCUM4(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)*      szf );
						ACCUM4(sx2,sy1,sz2,      sxf *(1.0f-syf)*      szf );
						ACCUM4(sx1,sy2,sz2,(1.0f-sxf)*      syf *      szf );
						ACCUM4(sx2,sy2,sz2,      sxf *      syf *      szf );
					}

					memcpy(pdst, accum, sizeof(float)*dstchannels);

#undef ACCUM3
#undef ACCUM4

					pdst += dstchannels;
				}
				pdst += dstchannels*dst.getRowSkip();
			}
			pdst += dstchannels*dst.getSliceSkip();
		}
	}
};



// byte linear resampler, does not do any format conversions.
// only handles pixel formats that use 1 byte per color channel.
// 2D only; punts 3D pixelboxes to default LinearResampler (slow).
// templated on bytes-per-pixel to allow compiler optimizations, such
// as unrolling loops and replacing multiplies with bitshifts
template<unsigned int channels> struct LinearResampler_Byte {
	static void scale(const PixelBox& src, const PixelBox& dst) {
		// assert(src.format == dst.format);

		// only optimized for 2D
		if (src.getDepth() > 1 || dst.getDepth() > 1) {
			LinearResampler::scale(src, dst);
			return;
		}

		// srcdata stays at beginning of slice, pdst is a moving pointer
		uchar* srcdata = (uchar*)src.data;
		uchar* pdst = (uchar*)dst.data;

		// sx_48,sy_48 represent current position in source
		// using 16/48-bit fixed precision, incremented by steps
		uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
		uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
		
		uint64 sy_48 = (stepy >> 1) - 1;
		for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
            // bottom 28 bits of temp are 16/12 bit fixed precision, used to
            // adjust a source coordinate backwards by half a pixel so that the
            // integer bits represent the first sample (eg, sx1) and the
            // fractional bits are the blend weight of the second sample
            unsigned int temp = static_cast<unsigned int>(sy_48 >> 36);
			temp = (temp > 0x800)? temp - 0x800: 0;
			unsigned int syf = temp & 0xFFF;
			uint32 sy1 = temp >> 12;
			uint32 sy2 = std::min(sy1+1, src.bottom-src.top-1);
			size_t syoff1 = sy1 * src.rowPitch;
			size_t syoff2 = sy2 * src.rowPitch;

			uint64 sx_48 = (stepx >> 1) - 1;
			for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
				temp = static_cast<unsigned int>(sx_48 >> 36);
				temp = (temp > 0x800)? temp - 0x800 : 0;
				unsigned int sxf = temp & 0xFFF;
				uint32 sx1 = temp >> 12;
				uint32 sx2 = std::min(sx1+1, src.right-src.left-1);

				unsigned int sxfsyf = sxf*syf;
				for (unsigned int k = 0; k < channels; k++) {
					unsigned int accum =
						srcdata[(sx1 + syoff1)*channels+k]*(0x1000000-(sxf<<12)-(syf<<12)+sxfsyf) +
						srcdata[(sx2 + syoff1)*channels+k]*((sxf<<12)-sxfsyf) +
						srcdata[(sx1 + syoff2)*channels+k]*((syf<<12)-sxfsyf) +
						srcdata[(sx2 + syoff2)*channels+k]*sxfsyf;
					// accum is computed using 8/24-bit fixed-point math
					// (maximum is 0xFF000000; rounding will not cause overflow)
					*pdst++ = static_cast<uchar>((accum + 0x800000) >> 24);
				}
			}
			pdst += channels*dst.getRowSkip();
		}
	}
};
/** @} */
/** @} */

}

#endif